lsy9874205 commited on
Commit
8b6b9ab
Β·
2 Parent(s): 0349600 7ff0ae5

Deploying Pythonic RAG

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
README_Assignment 3.md ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: DeployPythonicRAG
3
+ emoji: πŸ“‰
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: docker
7
+ pinned: false
8
+ license: apache-2.0
9
+ ---
10
+
11
+ # Deploying Pythonic Chat With Your Text File Application
12
+
13
+ In today's breakout rooms, we will be following the process that you saw during the challenge.
14
+
15
+ Today, we will repeat the same process - but powered by our Pythonic RAG implementation we created last week.
16
+
17
+ You'll notice a few differences in the `app.py` logic - as well as a few changes to the `aimakerspace` package to get things working smoothly with Chainlit.
18
+
19
+ > NOTE: If you want to run this locally - be sure to use `uv sync`, and then `uv run chainlit run app.py` to start the application outside of Docker.
20
+
21
+ ## Reference Diagram (It's Busy, but it works)
22
+
23
+ ![image](https://i.imgur.com/IaEVZG2.png)
24
+
25
+ ### Anatomy of a Chainlit Application
26
+
27
+ [Chainlit](https://docs.chainlit.io/get-started/overview) is a Python package similar to Streamlit that lets users write a backend and a front end in a single (or multiple) Python file(s). It is mainly used for prototyping LLM-based Chat Style Applications - though it is used in production in some settings with 1,000,000s of MAUs (Monthly Active Users).
28
+
29
+ The primary method of customizing and interacting with the Chainlit UI is through a few critical [decorators](https://blog.hubspot.com/website/decorators-in-python).
30
+
31
+ > NOTE: Simply put, the decorators (in Chainlit) are just ways we can "plug-in" to the functionality in Chainlit.
32
+
33
+ We'll be concerning ourselves with three main scopes:
34
+
35
+ 1. On application start - when we start the Chainlit application with a command like `chainlit run app.py`
36
+ 2. On chat start - when a chat session starts (a user opens the web browser to the address hosting the application)
37
+ 3. On message - when the users sends a message through the input text box in the Chainlit UI
38
+
39
+ Let's dig into each scope and see what we're doing!
40
+
41
+ ### On Application Start:
42
+
43
+ The first thing you'll notice is that we have the traditional "wall of imports" this is to ensure we have everything we need to run our application.
44
+
45
+ ```python
46
+ import os
47
+ from typing import List
48
+ from chainlit.types import AskFileResponse
49
+ from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
50
+ from aimakerspace.openai_utils.prompts import (
51
+ UserRolePrompt,
52
+ SystemRolePrompt,
53
+ AssistantRolePrompt,
54
+ )
55
+ from aimakerspace.openai_utils.embedding import EmbeddingModel
56
+ from aimakerspace.vectordatabase import VectorDatabase
57
+ from aimakerspace.openai_utils.chatmodel import ChatOpenAI
58
+ import chainlit as cl
59
+ ```
60
+
61
+ Next up, we have some prompt templates. As all sessions will use the same prompt templates without modification, and we don't need these templates to be specific per template - we can set them up here - at the application scope.
62
+
63
+ ```python
64
+ system_template = """\
65
+ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
66
+ system_role_prompt = SystemRolePrompt(system_template)
67
+
68
+ user_prompt_template = """\
69
+ Context:
70
+ {context}
71
+
72
+ Question:
73
+ {question}
74
+ """
75
+ user_role_prompt = UserRolePrompt(user_prompt_template)
76
+ ```
77
+
78
+ > NOTE: You'll notice that these are the exact same prompt templates we used from the Pythonic RAG Notebook in Week 1 Day 2!
79
+
80
+ Following that - we can create the Python Class definition for our RAG pipeline - or *chain*, as we'll refer to it in the rest of this walkthrough.
81
+
82
+ Let's look at the definition first:
83
+
84
+ ```python
85
+ class RetrievalAugmentedQAPipeline:
86
+ def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
87
+ self.llm = llm
88
+ self.vector_db_retriever = vector_db_retriever
89
+
90
+ async def arun_pipeline(self, user_query: str):
91
+ ### RETRIEVAL
92
+ context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
93
+
94
+ context_prompt = ""
95
+ for context in context_list:
96
+ context_prompt += context[0] + "\n"
97
+
98
+ ### AUGMENTED
99
+ formatted_system_prompt = system_role_prompt.create_message()
100
+
101
+ formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
102
+
103
+
104
+ ### GENERATION
105
+ async def generate_response():
106
+ async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
107
+ yield chunk
108
+
109
+ return {"response": generate_response(), "context": context_list}
110
+ ```
111
+
112
+ Notice a few things:
113
+
114
+ 1. We have modified this `RetrievalAugmentedQAPipeline` from the initial notebook to support streaming.
115
+ 2. In essence, our pipeline is *chaining* a few events together:
116
+ 1. We take our user query, and chain it into our Vector Database to collect related chunks
117
+ 2. We take those contexts and our user's questions and chain them into the prompt templates
118
+ 3. We take that prompt template and chain it into our LLM call
119
+ 4. We chain the response of the LLM call to the user
120
+ 3. We are using a lot of `async` again!
121
+
122
+ Now, we're going to create a helper function for processing uploaded text files.
123
+
124
+ First, we'll instantiate a shared `CharacterTextSplitter`.
125
+
126
+ ```python
127
+ text_splitter = CharacterTextSplitter()
128
+ ```
129
+
130
+ Now we can define our helper.
131
+
132
+ ```python
133
+ def process_file(file: AskFileResponse):
134
+ import tempfile
135
+ import shutil
136
+
137
+ print(f"Processing file: {file.name}")
138
+
139
+ # Create a temporary file with the correct extension
140
+ suffix = f".{file.name.split('.')[-1]}"
141
+ with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
142
+ # Copy the uploaded file content to the temporary file
143
+ shutil.copyfile(file.path, temp_file.name)
144
+ print(f"Created temporary file at: {temp_file.name}")
145
+
146
+ # Create appropriate loader
147
+ if file.name.lower().endswith('.pdf'):
148
+ loader = PDFLoader(temp_file.name)
149
+ else:
150
+ loader = TextFileLoader(temp_file.name)
151
+
152
+ try:
153
+ # Load and process the documents
154
+ documents = loader.load_documents()
155
+ texts = text_splitter.split_texts(documents)
156
+ return texts
157
+ finally:
158
+ # Clean up the temporary file
159
+ try:
160
+ os.unlink(temp_file.name)
161
+ except Exception as e:
162
+ print(f"Error cleaning up temporary file: {e}")
163
+ ```
164
+
165
+ Simply put, this downloads the file as a temp file, we load it in with `TextFileLoader` and then split it with our `TextSplitter`, and returns that list of strings!
166
+
167
+ #### ❓ QUESTION #1:
168
+
169
+ Why do we want to support streaming? What about streaming is important, or useful?
170
+ LSY'S ANSWER ->Streaming allows us to send the reponse to the user in real-time. Doesn't need to wait for the entire response to be generated. Even though the steps in the pipeline are logically sequential, async ensures these steps don't block other tasks in the broader app. Multiple user queries can be processed in parallel.
171
+
172
+ ### On Chat Start:
173
+
174
+ The next scope is where "the magic happens". On Chat Start is when a user begins a chat session. This will happen whenever a user opens a new chat window, or refreshes an existing chat window.
175
+
176
+ You'll see that our code is set-up to immediately show the user a chat box requesting them to upload a file.
177
+
178
+ ```python
179
+ while files == None:
180
+ files = await cl.AskFileMessage(
181
+ content="Please upload a Text or PDF file to begin!",
182
+ accept=["text/plain", "application/pdf"],
183
+ max_size_mb=2,
184
+ timeout=180,
185
+ ).send()
186
+ ```
187
+
188
+ Once we've obtained the text file - we'll use our processing helper function to process our text!
189
+
190
+ After we have processed our text file - we'll need to create a `VectorDatabase` and populate it with our processed chunks and their related embeddings!
191
+
192
+ ```python
193
+ vector_db = VectorDatabase()
194
+ vector_db = await vector_db.abuild_from_list(texts)
195
+ ```
196
+
197
+ Once we have that piece completed - we can create the chain we'll be using to respond to user queries!
198
+
199
+ ```python
200
+ retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
201
+ vector_db_retriever=vector_db,
202
+ llm=chat_openai
203
+ )
204
+ ```
205
+
206
+ Now, we'll save that into our user session!
207
+
208
+ > NOTE: Chainlit has some great documentation about [User Session](https://docs.chainlit.io/concepts/user-session).
209
+
210
+ #### ❓ QUESTION #2:
211
+
212
+ Why are we using User Session here? What about Python makes us need to use this? Why not just store everything in a global variable?
213
+ LSY'S ANSWER: A User Session ensures each user's data is isolated from other users. Things like chat history, prefs, authentication (if used) details, etc. In distributed systems, global variables are specific to a specific server instance. A User Session is sotred in memory or in a session db, ensuring consistency across server instances.
214
+
215
+ ### On Message
216
+
217
+ First, we load our chain from the user session:
218
+
219
+ ```python
220
+ chain = cl.user_session.get("chain")
221
+ ```
222
+
223
+ Then, we run the chain on the content of the message - and stream it to the front end - that's it!
224
+
225
+ ```python
226
+ msg = cl.Message(content="")
227
+ result = await chain.arun_pipeline(message.content)
228
+
229
+ async for stream_resp in result["response"]:
230
+ await msg.stream_token(stream_resp)
231
+ ```
232
+
233
+ ### πŸŽ‰
234
+
235
+ With that - you've created a Chainlit application that moves our Pythonic RAG notebook to a Chainlit application!
236
+
237
+ ## Deploying the Application to Hugging Face Space
238
+
239
+ Due to the way the repository is created - it should be straightforward to deploy this to a Hugging Face Space!
240
+
241
+ > NOTE: If you wish to go through the local deployments using `uv run chainlit run app.py` and Docker - please feel free to do so!
242
+
243
+ <details>
244
+ <summary>Creating a Hugging Face Space</summary>
245
+
246
+ 1. Navigate to the `Spaces` tab.
247
+
248
+ ![image](https://i.imgur.com/aSMlX2T.png)
249
+
250
+ 2. Click on `Create new Space`
251
+
252
+ ![image](https://i.imgur.com/YaSSy5p.png)
253
+
254
+ 3. Create the Space by providing values in the form. Make sure you've selected "Docker" as your Space SDK.
255
+
256
+ ![image](https://i.imgur.com/6h9CgH6.png)
257
+
258
+ </details>
259
+
260
+ <details>
261
+ <summary>Adding this Repository to the Newly Created Space</summary>
262
+
263
+ 1. Collect the SSH address from the newly created Space.
264
+
265
+ ![image](https://i.imgur.com/Oag0m8E.png)
266
+
267
+ > NOTE: The address is the component that starts with `[email protected]:spaces/`.
268
+
269
+ 2. Use the command:
270
+
271
+ ```bash
272
+ git remote add hf HF_SPACE_SSH_ADDRESS_HERE
273
+ ```
274
+
275
+ 3. Use the command:
276
+
277
+ ```bash
278
+ git pull hf main --no-rebase --allow-unrelated-histories -X ours
279
+ ```
280
+
281
+ 4. Use the command:
282
+
283
+ ```bash
284
+ git add .
285
+ ```
286
+
287
+ 5. Use the command:
288
+
289
+ ```bash
290
+ git commit -m "Deploying Pythonic RAG"
291
+ ```
292
+
293
+ 6. Use the command:
294
+
295
+ ```bash
296
+ git push hf main
297
+ ```
298
+
299
+ 7. The Space should automatically build as soon as the push is completed!
300
+
301
+ > NOTE: The build will fail before you complete the following steps!
302
+
303
+ </details>
304
+
305
+ <details>
306
+ <summary>Adding OpenAI Secrets to the Space</summary>
307
+
308
+ 1. Navigate to your Space settings.
309
+
310
+ ![image](https://i.imgur.com/zh0a2By.png)
311
+
312
+ 2. Navigate to `Variables and secrets` on the Settings page and click `New secret`:
313
+
314
+ ![image](https://i.imgur.com/g2KlZdz.png)
315
+
316
+ 3. In the `Name` field - input `OPENAI_API_KEY` in the `Value (private)` field, put your OpenAI API Key.
317
+
318
+ ![image](https://i.imgur.com/eFcZ8U3.png)
319
+
320
+ 4. The Space will begin rebuilding!
321
+
322
+ </details>
323
+
324
+ ## πŸŽ‰
325
+
326
+ You just deployed Pythonic RAG!
327
+
328
+ Try uploading a text file and asking some questions!
329
+
330
+ #### ❓ Discussion Question #1:
331
+
332
+ Upload a PDF file of the recent DeepSeek-R1 paper and ask the following questions:
333
+
334
+ 1. What is RL and how does it help reasoning?
335
+ 2. What is the difference between DeepSeek-R1 and DeepSeek-R1-Zero?
336
+ 3. What is this paper about?
337
+
338
+ Does this application pass your vibe check? Are there any immediate pitfalls you're noticing?
339
+
340
+ ## 🚧 CHALLENGE MODE 🚧
341
+
342
+ For the challenge mode, please instead create a simple FastAPI backend with a simple React (or any other JS framework) frontend.
343
+
344
+ You can use the same prompt templates and RAG pipeline as we did here - but you'll need to modify the code to work with FastAPI and React.
345
+
346
+ Deploy this application to Hugging Face Spaces!
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import os
2
  from typing import List
3
  from chainlit.types import AskFileResponse
@@ -12,6 +13,12 @@ from aimakerspace.vectordatabase import VectorDatabase
12
  from aimakerspace.openai_utils.chatmodel import ChatOpenAI
13
  import chainlit as cl
14
 
 
 
 
 
 
 
15
  system_template = """\
16
  Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
17
  system_role_prompt = SystemRolePrompt(system_template)
 
1
+ from dotenv import load_dotenv
2
  import os
3
  from typing import List
4
  from chainlit.types import AskFileResponse
 
13
  from aimakerspace.openai_utils.chatmodel import ChatOpenAI
14
  import chainlit as cl
15
 
16
+ load_dotenv() # Load environment variables from .env file
17
+
18
+ # Add this near the top of the file, after the imports
19
+ if not os.getenv("OPENAI_API_KEY"):
20
+ raise ValueError("OPENAI_API_KEY environment variable is not set")
21
+
22
  system_template = """\
23
  Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
24
  system_role_prompt = SystemRolePrompt(system_template)
pythonicrag_ai5_llmops.code-workspace ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "folders": [
3
+ {
4
+ "path": "."
5
+ },
6
+ {
7
+ "path": "../AIE5"
8
+ }
9
+ ],
10
+ "settings": {}
11
+ }