Spaces:
Runtime error
Runtime error
File size: 9,405 Bytes
af1cbd8 86ea239 af1cbd8 86ea239 af1cbd8 86ea239 af1cbd8 7ab42e6 af1cbd8 7ab42e6 af1cbd8 7ab42e6 af1cbd8 7ab42e6 af1cbd8 86ea239 af1cbd8 86ea239 af1cbd8 86ea239 66ea967 86ea239 66ea967 86ea239 66ea967 86ea239 66ea967 86ea239 66ea967 86ea239 66ea967 86ea239 66ea967 86ea239 fe86c4e 86ea239 fe86c4e 1cf8611 86ea239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from ast import arg
import FunctionsModelSA_V1
import numpy as np
import streamlit as st
import pandas as pd
import PIL
import time
import main_app
import utils
from colour import Color
import plotly.graph_objects as go
from nltk import tokenize
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import nltk
nltk.download('punkt')
import codecs
import pickle
import string
from scipy import spatial
import pytorch_lightning as pl
from urlextract import URLExtract
from transformers import BertTokenizerFast as BertTokenizer, BertModel, BertConfig
import streamlit_analytics
from FunctionsModelSA_V1 import *
#from model_V1 import *
def table_data():
# creating table data
field = [
'Data Scientist',
'Dataset',
'Algorithm',
'Framework',
'Ensemble',
'Domain',
'Model Size'
]
data = [
'Jeffrey Ott',
'Internal + Campaign monitor',
'BERT_Uncased_L_2_H_128_A-2, Single Linear Layer Neural Network, Random Forest',
'Pytorch',
'Bootstrapping',
'NLP Text Classification',
'16.8 MB'
]
data = {
'Field':field,
'Data':data
}
df = pd.DataFrame.from_dict(data)
return df
def add_bg_from_url():
st.markdown(
f"""
<style>
.stApp {{
background-image: linear-gradient(#0A3144,#126072,#1C8D99);
background-attachment: fixed;
background-size: cover
}}
</style>
""",
unsafe_allow_html=True
)
# add_bg_from_url()
st.markdown("#### Sentiment Analysis: Email Industry v1.2")
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1,1,1,1])
with stats_col1:
st.caption("Verified: Production")
#st.metric(label="Verified", value= "Production")
with stats_col2:
st.caption("Accuracy: 85%")
#st.metric(label="Accuracy", value= "85%")
with stats_col3:
st.caption("Speed: 3.86 ms")
#st.metric(label="Speed", value="3.86 ms")
with stats_col4:
st.caption("Industry: Email")
#st.metric(label="Industry", value="Email")
with st.sidebar:
with st.expander('Model Description', expanded=False):
img = PIL.Image.open("figures/ModelSA.png")
st.image(img)
st.markdown('The model seeks to solve the problem of how to set the tone for an email campaign appropriately. This 5th generation model from the Loxz family uses state-of-the-art NLP to determine and predict the optimized sentiment of an email using tokenization techniques. The model will analyze any email text “shape” and help the user understand the tone and how that tone correlates with the metric of interest. We applied a pre-trained tiny BERT model to vectorize the email campaign text body, then a softmax dense layer was added to get the multi-label classifications. Email metrics are provided prior to campaign launch, and the model determines the optimal engagement rate based on several factors, including inputs by the campaign engineer.')
with st.expander('Model Information', expanded=False):
hide_table_row_index = """
<style>
thead tr th:first-child {display:none}
tbody th {display:none}
</style>
"""
st.markdown(hide_table_row_index, unsafe_allow_html=True)
st.table(table_data())
utils.url_button('Model Homepage','https://loxz.com/#/models/SA')
# url_button('Full Report','https://resources.loxz.com/reports/realtime-ml-character-count-model')
utils.url_button('Amazon Market Place','https://aws.amazon.com/marketplace')
industry_lists = ['Software and Technology', 'Academic and Education',
'Entertainment', 'Finance and Banking', 'Hospitality',
'Real Estate', 'Retail', 'Energy', 'Healthcare']
campaign_types = ['Webinar', 'Engagement', 'Product_Announcement', 'Promotional',
'Newsletter', 'Abandoned_Cart', 'Review_Request', 'Survey',
'Transactional', 'Usage_and_Consumption']
target_variables = ['Conversion_Rate','Click_To_Open_Rate','Revenue_Per_Email']
region_variables = ['Africa', 'America', 'Asia', 'Europe', 'Oceania']
input_text = st.text_area("Please enter your email text here: ", height=50)
with st.expander('Please select your parameters: '):
with streamlit_analytics.track('test123'):
industry = st.selectbox(
'Please select your industry',
industry_lists,
index=6
)
target = st.selectbox(
'Please select your target variable',
target_variables,
index=1
)
campaign = st.selectbox(
'Please select your campaign type',
campaign_types,
index=7
)
region = st.selectbox(
'Select your target region to generate the email with a more appropriate tone:',
region_variables,
index=1
)
with st.expander('Adjust your tone intensities for your preference: '):
#'Joyful', 'Confident', 'Urgent', 'Friendly', 'Optimistic', 'Analytical', 'Casual'
joyful_tone_value = st.slider(
'Joyful: ',
value = 0
)
st.write('Joyful: ', joyful_tone_value)
confident_tone_value = st.slider(
'Confident: ',
value = 0
)
st.write('Confident: ', confident_tone_value)
urgent_tone_value = st.slider(
'Urgent: ',
value = 0
)
st.write('Urgent: ', urgent_tone_value)
friendly_tone_value = st.slider(
'Friendly: ',
value = 0
)
st.write('Friendly: ', friendly_tone_value)
optimistic_tone_value = st.slider(
'Optimistic: ',
value = 0
)
st.write('Optimistic: ', optimistic_tone_value)
analytical_tone_value = st.slider(
'Analytical: ',
value = 0
)
st.write('Analytical: ', analytical_tone_value)
casual_tone_value = st.slider(
'Casual: ',
value = 0
)
st.write('Casual: ', casual_tone_value)
Loxz_recom_box = st.checkbox('Select Loxz Recommended Tones for Optimal Output')
if st.button('Generate Predictions'):
start_time = time.time()
if input_text == "":
st.error('Please enter a sentence!')
else:
placeholder = st.empty()
placeholder.text('Loading Data...')
# Starting predictions
bucket='emailcampaignmodeldata'
# file_key = 'fullEmailBody/fullemailtextbody_labeled_3rates_8tones_20220524.csv'
# email_data = utils.get_files_from_aws(bucket,file_key)
tone_key = 'ModelSADataSets/Tone_and_target.csv'
tone_data = FunctionsModelSA_V1.load_data()
test_predictions,tones = FunctionsModelSA_V1.convert_text_to_tone(input_text)
# st.dataframe(test_predictions)
# st.dataframe(tones)
campaign_val='campaign_type_'+ campaign
industry_val='industry_'+ industry
pred,lower,upper,model = FunctionsModelSA_V1.prediction(tones,campaign_val,industry_val,target)
worst_target,best_target,best_target_tones = FunctionsModelSA_V1.find_max_cat(tone_data,target,industry_val,campaign_val)
#best_target, best_target_tones
#FunctionsModelSA_V1.plot_CI(pred,lower,upper)
st.write('The Predicted Value is ' + str(pred))
fig1 = go.Figure(go.Bar(
name = 'Tone Levels',
x=[joyful_tone_value, confident_tone_value, urgent_tone_value, friendly_tone_value, optimistic_tone_value, analytical_tone_value, casual_tone_value],
y=['Joyful', 'Confident', 'Urgent', 'Friendly', 'Optimistic', 'Analytical', 'Casual'],
orientation='h')
)
st.plotly_chart(fig1, use_container_width=True)
#if((best_target!=0) and (pred<best_target)):
if Loxz_recom_box == True:
recommended_changes=(best_target_tones)
change=best_target-pred
#recommend(tones,recommended_changes,change,target)
fig2 = go.Figure()
fig2.add_trace(go.Bar(
y=tone_labels,
x=recommended_changes,
name='Recommend changes',
orientation='h',
text=np.round(recommended_changes,3),
width=.5,
marker=dict(
color='#e60f00',
line=dict(color='rgba(58, 71, 80, 1.0)', width=1)))
)
fig2.update_traces(textfont_size=18, textposition="outside", cliponaxis=False)
if target == 'Revenue_Per_Email':
out = f"${round(change,2)}"
st.write("The output will be between the range " + str(round(lower,2)) + ' and ' + str(round(upper,2)))
st.write("The Predicted "+str(target) +" is "+ str(round(pred,2)))
else:
out = f"{round(change,2)*100}%"
st.write("The output will be between the range " + str(round(lower,2) * 100) + ' and ' + str(round(upper,2) *100))
st.write("The Predicted "+str(target) +" is "+ str(round(pred,2)*100))
fig2.update_layout(title_text=f'The following Changes will yield a {out} increase in {target}')
st.plotly_chart(fig2, use_container_width=True)
#FunctionsModelSA_V1.corrections(best_target_tones,test_predictions))
placeholder.empty()
|