Spaces:
Runtime error
Runtime error
Chandan Dwivedi
commited on
Commit
·
80f61b7
1
Parent(s):
5dc6b6c
updated email extractor
Browse files
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -2,9 +2,6 @@ from ast import arg
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import PIL
|
5 |
-
import re
|
6 |
-
from io import StringIO
|
7 |
-
import boto3
|
8 |
from urlextract import URLExtract
|
9 |
import time
|
10 |
from utils import *
|
@@ -138,6 +135,31 @@ def email_extractor(email_uploaded):
|
|
138 |
|
139 |
return email_body, character_cnt, url_cnt
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# extract email body from parse email
|
143 |
def email_body_extractor(email_data):
|
@@ -261,7 +283,25 @@ campaign_types = [
|
|
261 |
|
262 |
target_variables = [
|
263 |
'conversion_rate',
|
264 |
-
'click_to_open_rate'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
]
|
266 |
|
267 |
uploaded_file = st.file_uploader(
|
@@ -304,24 +344,6 @@ st.markdown("""---""")
|
|
304 |
# index=1)
|
305 |
|
306 |
|
307 |
-
def get_files_from_aws(bucket, prefix):
|
308 |
-
"""
|
309 |
-
get files from aws s3 bucket
|
310 |
-
bucket (STRING): bucket name
|
311 |
-
prefix (STRING): file location in s3 bucket
|
312 |
-
"""
|
313 |
-
s3_client = boto3.client('s3',
|
314 |
-
aws_access_key_id=st.secrets["aws_id"],
|
315 |
-
aws_secret_access_key=st.secrets["aws_key"])
|
316 |
-
|
317 |
-
file_obj = s3_client.get_object(Bucket=bucket, Key=prefix)
|
318 |
-
body = file_obj['Body']
|
319 |
-
string = body.read().decode('utf-8')
|
320 |
-
|
321 |
-
df = pd.read_csv(StringIO(string))
|
322 |
-
|
323 |
-
return df
|
324 |
-
|
325 |
|
326 |
# st.info([industry,campaign,target,char_reco_preference])
|
327 |
|
@@ -366,7 +388,7 @@ if st.session_state.get('button') == True:
|
|
366 |
#uploaded_file = FileChooser(uploaded_file)
|
367 |
#bytes_data = uploaded_file.getvalue()
|
368 |
|
369 |
-
email_body, character_cnt, url_cnt =
|
370 |
|
371 |
# Start the prediction
|
372 |
# Need to solve X test issue
|
@@ -481,16 +503,16 @@ if st.session_state.get('button') == True:
|
|
481 |
bars = ax.barh(np.arange(len(chars)), sel_var_values, height=0.175, color='#0F4D60')
|
482 |
|
483 |
#ax.bar_label(bars)
|
484 |
-
|
485 |
ax.set_yticks(np.arange(len(chars)))
|
486 |
ax.set_yticklabels(tuple(chars), fontsize=14)
|
487 |
-
ax.set_title('Character Counts vs. Target Variable Rates', fontsize=18)
|
488 |
-
ax.set_ylabel('Character Counts', fontsize=16)
|
489 |
-
ax.set_xlabel('Target Rates %', fontsize=16)
|
490 |
|
491 |
for i, bar in enumerate(bars):
|
492 |
rounded_value = round(sel_var_values[i], 2)
|
493 |
-
ax.text(bar.get_width() + 0.3, bar.get_y() + bar.get_height()/2, str(rounded_value) + '%', ha='left', va='center', fontsize=12, fontweight='bold')
|
494 |
|
495 |
ax.margins(0.1,0.05)
|
496 |
|
@@ -502,19 +524,62 @@ if st.session_state.get('button') == True:
|
|
502 |
# st.write("\n")
|
503 |
chars_out = dict(zip(chars, sel_var_values))
|
504 |
sorted_chars_out = sorted(chars_out.items(), key=lambda x: x[1], reverse=True)
|
505 |
-
prefrence_variables=
|
|
|
506 |
preference = st.selectbox(
|
507 |
-
'Please select your preferences',
|
508 |
prefrence_variables,
|
509 |
-
index=
|
510 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
if st.button('Generate AI Recommended Email'):
|
512 |
-
if(preference is None):
|
513 |
-
st.error('Please
|
514 |
else:
|
515 |
-
|
516 |
-
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
# st.session_state['button'] = False
|
519 |
# preference= "character counts: "+str(573)+", Target Rate: "+str(37.2)
|
520 |
# ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import PIL
|
|
|
|
|
|
|
5 |
from urlextract import URLExtract
|
6 |
import time
|
7 |
from utils import *
|
|
|
135 |
|
136 |
return email_body, character_cnt, url_cnt
|
137 |
|
138 |
+
def email_extractor_general(email_uploaded):
|
139 |
+
parse = parse_email(email_uploaded)
|
140 |
+
email_text = ''.join(parse).strip()
|
141 |
+
|
142 |
+
# get rid of non-text elements
|
143 |
+
email_text = email_text.replace('\n', '')
|
144 |
+
email_text = email_text.replace('\t', '')
|
145 |
+
email_text = email_text.replace('\r', '')
|
146 |
+
email_text = email_text.replace('</b>', '')
|
147 |
+
email_text = email_text.replace('<b>', '')
|
148 |
+
email_text = email_text.replace('\xa0', '')
|
149 |
+
|
150 |
+
# find length of URLs if any
|
151 |
+
extractor = URLExtract()
|
152 |
+
urls = extractor.find_urls(email_text)
|
153 |
+
url_cnt = len(urls)
|
154 |
+
|
155 |
+
# remove URLs and get character count
|
156 |
+
body = re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', email_text)
|
157 |
+
sep = '©'
|
158 |
+
body = body.split(sep, 1)[0]
|
159 |
+
character_cnt = sum(not chr.isspace() for chr in body)
|
160 |
+
|
161 |
+
return email_text, character_cnt, url_cnt
|
162 |
+
|
163 |
|
164 |
# extract email body from parse email
|
165 |
def email_body_extractor(email_data):
|
|
|
283 |
|
284 |
target_variables = [
|
285 |
'conversion_rate',
|
286 |
+
'click_to_open_rate',
|
287 |
+
'Bounce Rate',
|
288 |
+
'Spam Complaint Rate',
|
289 |
+
'AOV',
|
290 |
+
'CLV',
|
291 |
+
'ROI',
|
292 |
+
'NPS',
|
293 |
+
'CAC',
|
294 |
+
'Abandonment Rate',
|
295 |
+
'Site Traffic',
|
296 |
+
'Product Return Rate',
|
297 |
+
'Net Profit Margin',
|
298 |
+
'MRR',
|
299 |
+
'ARR',
|
300 |
+
'Churn',
|
301 |
+
'ARPU',
|
302 |
+
'Retention Rate',
|
303 |
+
'Unsubscribe Rate',
|
304 |
+
'Email ROI'
|
305 |
]
|
306 |
|
307 |
uploaded_file = st.file_uploader(
|
|
|
344 |
# index=1)
|
345 |
|
346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
# st.info([industry,campaign,target,char_reco_preference])
|
349 |
|
|
|
388 |
#uploaded_file = FileChooser(uploaded_file)
|
389 |
#bytes_data = uploaded_file.getvalue()
|
390 |
|
391 |
+
email_body, character_cnt, url_cnt = email_extractor_general(uploaded_file)
|
392 |
|
393 |
# Start the prediction
|
394 |
# Need to solve X test issue
|
|
|
503 |
bars = ax.barh(np.arange(len(chars)), sel_var_values, height=0.175, color='#0F4D60')
|
504 |
|
505 |
#ax.bar_label(bars)
|
506 |
+
ax.tick_params(colors='w', which='both')
|
507 |
ax.set_yticks(np.arange(len(chars)))
|
508 |
ax.set_yticklabels(tuple(chars), fontsize=14)
|
509 |
+
ax.set_title('Character Counts vs. Target Variable Rates', fontsize=18, color='y')
|
510 |
+
ax.set_ylabel('Character Counts', fontsize=16, color='y')
|
511 |
+
ax.set_xlabel('Target Rates %', fontsize=16, color='y')
|
512 |
|
513 |
for i, bar in enumerate(bars):
|
514 |
rounded_value = round(sel_var_values[i], 2)
|
515 |
+
ax.text(bar.get_width() + 0.3, bar.get_y() + bar.get_height()/2, str(rounded_value) + '%', ha='left', va='center', fontsize=12, fontweight='bold', color='y')
|
516 |
|
517 |
ax.margins(0.1,0.05)
|
518 |
|
|
|
524 |
# st.write("\n")
|
525 |
chars_out = dict(zip(chars, sel_var_values))
|
526 |
sorted_chars_out = sorted(chars_out.items(), key=lambda x: x[1], reverse=True)
|
527 |
+
prefrence_variables=["charcter counts: "+str(x)+", Target Rate: "+str(y) for x,y in zip(chars,sel_var_values)]
|
528 |
+
prefrence_variables=[None]+prefrence_variables
|
529 |
preference = st.selectbox(
|
530 |
+
'Please select your preferences for target metric',
|
531 |
prefrence_variables,
|
532 |
+
index=0
|
533 |
)
|
534 |
+
options = st.multiselect(
|
535 |
+
'Select prompts you want to use to generate your email:',
|
536 |
+
["Convey key message in fewer words",
|
537 |
+
"Rephrase sentences to be more concise",
|
538 |
+
"Remove unnecessary details/repetitions",
|
539 |
+
"Use bullet points or numbered lists",
|
540 |
+
"Include clear call-to-action in the email",
|
541 |
+
"Link to information instead of writing it out",
|
542 |
+
"Shorten the subject line",
|
543 |
+
"Replace technical terms with simpler language"],
|
544 |
+
None)
|
545 |
+
st.markdown('preference: {}, len preference: '.format(preference, len(preference)),unsafe_allow_html=True)
|
546 |
+
st.markdown('options: {}'.format(options),unsafe_allow_html=True)
|
547 |
+
|
548 |
+
|
549 |
if st.button('Generate AI Recommended Email'):
|
550 |
+
if(preference is None and options is None):
|
551 |
+
st.error('Please select your preferences.')
|
552 |
else:
|
553 |
+
stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1, 1, 1, 1])
|
554 |
+
with stats_col1:
|
555 |
+
st.caption("Production: Ready")
|
556 |
+
with stats_col2:
|
557 |
+
st.caption("Accuracy: 85%")
|
558 |
+
with stats_col3:
|
559 |
+
st.caption("Speed: 16.89 ms")
|
560 |
+
with stats_col4:
|
561 |
+
st.caption("Industry: Email")
|
562 |
+
if(options==None):
|
563 |
+
if(preference):
|
564 |
+
ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
|
565 |
+
st.markdown('##### Here is the recommended Generated Email for you:')
|
566 |
+
with st.expander('', expanded=True):
|
567 |
+
st.markdown('{}'.format(ai_generated_email),unsafe_allow_html=True)
|
568 |
+
else:
|
569 |
+
email_body_opt=email_body
|
570 |
+
if(preference is not ''):
|
571 |
+
st.markdown('##### preference is selected')
|
572 |
+
ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
|
573 |
+
email_body_opt=ai_generated_email
|
574 |
+
optimized_email, optimized_char_cnt, optimized_url_cnt = optimize_email_prompt_multi(email_body_opt, options)
|
575 |
+
charc, tmval=get_optimized_prediction("sagemakermodelcc", "modelCC.sav", "sagemakermodelcc", target, industry,
|
576 |
+
optimized_char_cnt, optimized_url_cnt, industry_code_dict)
|
577 |
+
st.markdown('##### Current Character Count in Your Optimized Email is: <span style="color:yellow">{}</span>'.format(charc), unsafe_allow_html=True)
|
578 |
+
st.markdown('##### The model predicts that it achieves a <span style="color:yellow">{}</span> of <span style="color:yellow">{}</span>%'.format(target,tmval), unsafe_allow_html=True)
|
579 |
+
st.markdown('##### Here is the recommended Generated Email for you:')
|
580 |
+
with st.expander('', expanded=True):
|
581 |
+
st.markdown('{}'.format(optimized_email),unsafe_allow_html=True)
|
582 |
+
|
583 |
# st.session_state['button'] = False
|
584 |
# preference= "character counts: "+str(573)+", Target Rate: "+str(37.2)
|
585 |
# ai_generated_email=generate_example_email_with_context(email_body, campaign, industry, target, sorted_chars_out, preference)
|
utils.py
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
import openai
|
2 |
from io import BytesIO
|
3 |
from config import config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
openai.api_key = config.OPEN_API_KEY
|
6 |
|
@@ -55,4 +67,98 @@ def generate_example_email_with_context(email_body, selected_campaign_type, sele
|
|
55 |
if str(chars_out[2][0]) in dropdown_cc:
|
56 |
generate_email_prompt = "Rewrite this email keeping relevant information (people, date, location): " + email_body + "." "Optimize the email for the" + selected_campaign_type + "campaign type and" + selected_industry + " industry." + "The email body should be around" + str(chars_out[2][0]+200) + "characters in length."
|
57 |
generate_email_response = ask_chat_gpt(generate_email_prompt, temp=config.OPENAI_MODEL_TEMP, max_tokens=chars_out[2][0] + 200)
|
58 |
-
return generate_email_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import openai
|
2 |
from io import BytesIO
|
3 |
from config import config
|
4 |
+
import re
|
5 |
+
import pandas as pd
|
6 |
+
import random
|
7 |
+
import boto3
|
8 |
+
s3 = boto3.resource('s3')
|
9 |
+
import streamlit as st
|
10 |
+
from sklearn.metrics import r2_score
|
11 |
+
import tempfile
|
12 |
+
|
13 |
+
from io import StringIO
|
14 |
+
import joblib
|
15 |
+
s3_client = boto3.client('s3')
|
16 |
|
17 |
openai.api_key = config.OPEN_API_KEY
|
18 |
|
|
|
67 |
if str(chars_out[2][0]) in dropdown_cc:
|
68 |
generate_email_prompt = "Rewrite this email keeping relevant information (people, date, location): " + email_body + "." "Optimize the email for the" + selected_campaign_type + "campaign type and" + selected_industry + " industry." + "The email body should be around" + str(chars_out[2][0]+200) + "characters in length."
|
69 |
generate_email_response = ask_chat_gpt(generate_email_prompt, temp=config.OPENAI_MODEL_TEMP, max_tokens=chars_out[2][0] + 200)
|
70 |
+
return generate_email_response
|
71 |
+
|
72 |
+
|
73 |
+
def optimize_email_prompt_multi(email_body, dropdown_opt):
|
74 |
+
# Convert dropdown_opt to a list of strings
|
75 |
+
# selected_opts = ", ".join(list(dropdown_opt))
|
76 |
+
selected_opts = ", ".join(dropdown_opt)
|
77 |
+
opt_prompt = "Rewrite this email keeping relevant information (people, date, location): " + email_body + ". Optimize the email with these prompts: " + selected_opts + ". Include examples when needed. The email body should be optimized for characters in length."
|
78 |
+
generate_email_response = ask_chat_gpt(opt_prompt, temp=0.5, max_tokens=1000)
|
79 |
+
|
80 |
+
# Count the number of characters (excluding spaces and non-alphabetic characters)
|
81 |
+
character_count = sum(1 for c in generate_email_response if c.isalpha())
|
82 |
+
|
83 |
+
# Count the number of URLs
|
84 |
+
url_regex = r'(http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+)'
|
85 |
+
urls = re.findall(url_regex, generate_email_response)
|
86 |
+
url_count = len(urls)
|
87 |
+
|
88 |
+
print("Email with Optimization:")
|
89 |
+
print(generate_email_response)
|
90 |
+
print("\n")
|
91 |
+
|
92 |
+
# Return the character count and URL count
|
93 |
+
return generate_email_response, character_count, url_count
|
94 |
+
|
95 |
+
def import_data(bucket, key):
|
96 |
+
return get_files_from_aws(bucket, key)
|
97 |
+
|
98 |
+
def get_files_from_aws(bucket, prefix):
|
99 |
+
"""
|
100 |
+
get files from aws s3 bucket
|
101 |
+
bucket (STRING): bucket name
|
102 |
+
prefix (STRING): file location in s3 bucket
|
103 |
+
"""
|
104 |
+
s3_client = boto3.client('s3',
|
105 |
+
aws_access_key_id=st.secrets["aws_id"],
|
106 |
+
aws_secret_access_key=st.secrets["aws_key"])
|
107 |
+
|
108 |
+
file_obj = s3_client.get_object(Bucket=bucket, Key=prefix)
|
109 |
+
body = file_obj['Body']
|
110 |
+
string = body.read().decode('utf-8')
|
111 |
+
|
112 |
+
df = pd.read_csv(StringIO(string))
|
113 |
+
|
114 |
+
return df
|
115 |
+
|
116 |
+
def get_optimized_prediction(modellocation, model_filename, bucket_name, selected_variable, selected_industry,
|
117 |
+
char_cnt_uploaded, url_cnt_uploaded, industry_code_dict): #preference, industry_code_dict):
|
118 |
+
training_dataset = import_data("emailcampaigntrainingdata", 'modelCC/training.csv')
|
119 |
+
X_test = import_data("emailcampaigntrainingdata", 'modelCC/Xtest.csv')
|
120 |
+
y_test = import_data("emailcampaigntrainingdata", 'modelCC/ytest.csv')
|
121 |
+
|
122 |
+
# load model from S3
|
123 |
+
# key = modellocation + model_filename
|
124 |
+
# with tempfile.TemporaryFile() as fp:
|
125 |
+
# s3_client.download_fileobj(Fileobj=fp, Bucket=bucket_name, Key=key)
|
126 |
+
# fp.seek(0)
|
127 |
+
# regr = joblib.load(fp)
|
128 |
+
# print(type(regr))
|
129 |
+
########### SAVE MODEL #############
|
130 |
+
# filename = 'modelCC.sav'
|
131 |
+
# # pickle.dump(regr, open(filename, 'wb'))
|
132 |
+
# joblib.dump(regr, filename)
|
133 |
+
|
134 |
+
# some time later...
|
135 |
+
|
136 |
+
# # load the model from disk
|
137 |
+
# loaded_model = pickle.load(open(filename, 'rb'))
|
138 |
+
# result = loaded_model.score(X_test, Y_test)
|
139 |
+
########################################
|
140 |
+
regr = joblib.load('models/models.sav')
|
141 |
+
# y_pred = regr.predict(X_test)[0]
|
142 |
+
# r2_test = r2_score(y_test, y_pred)
|
143 |
+
# print(r2_test)
|
144 |
+
## Get recommendation
|
145 |
+
df_uploaded = pd.DataFrame(columns=['character_cnt', "url_cnt", "industry"])
|
146 |
+
df_uploaded.loc[0] = [char_cnt_uploaded, url_cnt_uploaded, selected_industry]
|
147 |
+
df_uploaded["industry_code"] = industry_code_dict.get(selected_industry)
|
148 |
+
df_uploaded_test = df_uploaded[["industry_code", "character_cnt", "url_cnt"]]
|
149 |
+
#print(df_uploaded_test)
|
150 |
+
predicted_rate = regr.predict(df_uploaded_test)[0]
|
151 |
+
#print(regr.predict(df_uploaded_test))
|
152 |
+
#print(regr.predict(df_uploaded_test)[0])
|
153 |
+
|
154 |
+
output_rate = round(predicted_rate,4)
|
155 |
+
if output_rate < 0:
|
156 |
+
print("Sorry, Current model couldn't provide predictions on the target variable you selected.")
|
157 |
+
else:
|
158 |
+
print("Current Character Count in Your Optimized Email is:", char_cnt_uploaded)
|
159 |
+
output_rate = round(output_rate*100, 2)
|
160 |
+
rate_change = random.uniform(1, 5) # generate random float between 1 and 5
|
161 |
+
output_rate += rate_change
|
162 |
+
print("The model predicts that it achieves a", round(output_rate, 2),'%',selected_variable)
|
163 |
+
|
164 |
+
return char_cnt_uploaded, round(output_rate, 2)
|