import os import cv2 import torch #2.0.1 import numpy as np import gradio as gr import torch.nn as nn import random import string from imageAI import SimpleModel from myImage import ImageToCV,CVtoImage IMAGE_SIZE = 64 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SimpleModel(path='best_model.pth').to(device) def predict_and_draw(input_image): #input_image=ImageToCV(input_image) instructions = model.predict(input_image) img = cv2.imread(input_image, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE)) # 創建一個新的白色圖像 image = np.zeros((IMAGE_SIZE, IMAGE_SIZE), dtype=np.uint8) # 執行每條繪圖指令 for instruction in instructions: try:exec(instruction) except: import traceback traceback.print_exc() #image=CVtoImage(image) return img, image, "\n".join(instructions) iface = gr.Interface( fn=predict_and_draw, inputs=gr.Image(type="filepath"), outputs=[ gr.Image(type="numpy" ,image_mode="L" ,label="Input Image"), gr.Image(type="numpy" ,image_mode="L" ,label="Output Image"), gr.Textbox(label="Generated Instructions" ,show_copy_button=True)], title="Image to Drawing Instructions", description="Upload an image, and the model will predict drawing instructions based on it." ) iface.launch()