louiecerv's picture
sync to remote
744b6e5
import streamlit as st
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
from huggingface_hub import hf_hub_download
import os
# Define the CNN model class
class CNNClassifier(nn.Module):
def __init__(self, n_classes):
super(CNNClassifier, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Dropout(0.2),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(256, n_classes)
)
def forward(self, x):
return self.model(x)
hf_token = os.getenv("HF_TOKEN")
# Load the model from Hugging Face
model_path = hf_hub_download(repo_id="louiecerv/cats_dogs_recognition_torch_cnn",
filename="cats_dogs_classifier.pth", use_auth_token=hf_token)
n_classes = 2
model = CNNClassifier(n_classes)
model.load_state_dict(torch.load(model_path))
model.eval()
# Define the transformation pipeline
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor(),
])
# Streamlit app
st.title("Cat vs Dog Classifier")
st.write("Upload an image and the model will classify it as a cat or a dog.")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_container_width=True)
# Preprocess the image
image = transform(image).unsqueeze(0)
# Make prediction
with torch.no_grad():
outputs = model(image)
_, predicted = torch.max(outputs, 1)
label = "Cat" if predicted.item() == 0 else "Dog"
st.write(f"The model predicts this image is a: **{label}**")