Merge branch 'main' of https://huggingface.co/spaces/louiecerv/problem_solving_ai_tutor
Browse files- app.py +116 -86
- problems/problem1.png +0 -0
- problems/problem2.png +0 -0
- problems/problem3.png +0 -0
- problems/problem4.png +0 -0
- problems/problem5.png +0 -0
app.py
CHANGED
@@ -3,7 +3,23 @@ import os
|
|
3 |
import google.generativeai as genai
|
4 |
import json
|
5 |
from PIL import Image
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
MODEL_ID = "gemini-2.0-flash-exp"
|
9 |
try:
|
@@ -17,17 +33,17 @@ except Exception as e:
|
|
17 |
model = genai.GenerativeModel(MODEL_ID)
|
18 |
chat = model.start_chat()
|
19 |
|
20 |
-
def
|
21 |
"""
|
22 |
Returns the path to the local PDF file.
|
23 |
"""
|
24 |
try:
|
25 |
-
|
26 |
-
if not os.path.exists(
|
27 |
-
raise FileNotFoundError(f"{
|
28 |
-
return
|
29 |
except Exception as e:
|
30 |
-
st.error(f"Failed to find the local
|
31 |
st.stop() # Stop if the file is not found
|
32 |
|
33 |
# Initialize conversation history in Streamlit session state
|
@@ -36,35 +52,62 @@ if "conversation_history" not in st.session_state:
|
|
36 |
if "uploaded_file_part" not in st.session_state: # Store the file *part*
|
37 |
st.session_state.uploaded_file_part = None
|
38 |
if "uploaded_pdf_path" not in st.session_state:
|
39 |
-
st.session_state.uploaded_pdf_path =
|
40 |
|
41 |
-
def multimodal_prompt(pdf_path, text_prompt):
|
42 |
"""
|
43 |
Sends a multimodal prompt to Gemini, handling file uploads efficiently.
|
44 |
Args:
|
45 |
-
pdf_path: The path to the PDF
|
46 |
text_prompt: The text prompt for the model.
|
|
|
47 |
Returns:
|
48 |
The model's response as a string, or an error message.
|
49 |
"""
|
50 |
try:
|
51 |
-
if
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
response = chat.send_message(prompt)
|
59 |
|
60 |
# Update conversation history
|
61 |
-
st.session_state.conversation_history.append({"role": "user", "content": text_prompt, "
|
62 |
st.session_state.conversation_history.append({"role": "assistant", "content": response.text})
|
63 |
return response.text
|
64 |
|
65 |
except Exception as e:
|
66 |
return f"An error occurred: {e}"
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# --- Main Page ---
|
70 |
st.title("📚❓Problem Solving Tutor")
|
@@ -73,79 +116,66 @@ about = """
|
|
73 |
Replace this placeholder with the actual text.
|
74 |
"""
|
75 |
|
76 |
-
|
77 |
-
import re
|
78 |
-
import json
|
79 |
-
|
80 |
-
# Define constants
|
81 |
-
TEXT_PROMPT = """Use the provided document. Read the list of 5 quadratic equations.
|
82 |
-
Return your response as a JSON list. Do not include any extra text, explanations, or backslashes.
|
83 |
-
|
84 |
-
Example JSON output:
|
85 |
-
[
|
86 |
-
"x^2 - 5x + 6 = 0",
|
87 |
-
"2x^2 + 3x - 1 = 0",
|
88 |
-
"x^2 - 9 = 0",
|
89 |
-
"3x^2 - 2x + 4 = 0",
|
90 |
-
"x^2 + 8x + 15 = 0"
|
91 |
-
]
|
92 |
-
"""
|
93 |
-
|
94 |
-
# Define a function to extract equations from the AI response
|
95 |
-
def extract_equations(response):
|
96 |
-
try:
|
97 |
-
if isinstance(response, str):
|
98 |
-
response = response.strip().replace("\n", "").replace("\r", "")
|
99 |
-
if response.lower().startswith("json"):
|
100 |
-
response = response[4:].strip()
|
101 |
-
if response.startswith("[") and response.endswith("]"):
|
102 |
-
return json.loads(response)
|
103 |
-
else:
|
104 |
-
st.error("Error: AI response is not in expected JSON list format.")
|
105 |
-
return []
|
106 |
-
elif isinstance(response, list):
|
107 |
-
return response
|
108 |
-
else:
|
109 |
-
st.error("Error: Unexpected response format from AI.")
|
110 |
-
return []
|
111 |
-
except json.JSONDecodeError:
|
112 |
-
st.error("Error: Failed to parse AI response as a list.")
|
113 |
-
return []
|
114 |
-
|
115 |
-
# Define a function to extract quadratic equations from the problems
|
116 |
-
def extract_quadratic_equations(problems):
|
117 |
-
equations = []
|
118 |
-
for problem in problems:
|
119 |
-
match = re.search(r'([0-9x\^\+\-\=\s]+)', problem)
|
120 |
-
if match:
|
121 |
-
equations.append(match.group(1).strip())
|
122 |
-
else:
|
123 |
-
st.warning(f"Could not extract equation from: '{problem}'")
|
124 |
-
return equations
|
125 |
-
|
126 |
-
# Main code
|
127 |
-
with st.spinner("AI is thinking..."):
|
128 |
if st.session_state.get("uploaded_pdf_path") is None:
|
129 |
-
st.session_state.uploaded_pdf_path =
|
130 |
|
131 |
filepath = st.session_state.uploaded_pdf_path
|
132 |
-
response = multimodal_prompt(filepath, TEXT_PROMPT)
|
133 |
-
|
134 |
-
#
|
135 |
-
st.
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
st.
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
|
151 |
st.markdown("Visit our Hugging Face Space!")
|
|
|
3 |
import google.generativeai as genai
|
4 |
import json
|
5 |
from PIL import Image
|
6 |
+
import re
|
7 |
+
import json
|
8 |
+
import tempfile
|
9 |
|
10 |
+
# Define constants
|
11 |
+
TEXT_PROMPT = """Use the provided document. Read the list of quadratic equations.
|
12 |
+
Return your response as a JSON list. Do not include any extra text, explanations, or backslashes.
|
13 |
+
|
14 |
+
Example JSON output:
|
15 |
+
[
|
16 |
+
"x^2 - 5x + 6 = 0",
|
17 |
+
"2x^2 + 3x - 1 = 0",
|
18 |
+
"x^2 - 9 = 0",
|
19 |
+
"3x^2 - 2x + 4 = 0",
|
20 |
+
"x^2 + 8x + 15 = 0"
|
21 |
+
]
|
22 |
+
"""
|
23 |
|
24 |
MODEL_ID = "gemini-2.0-flash-exp"
|
25 |
try:
|
|
|
33 |
model = genai.GenerativeModel(MODEL_ID)
|
34 |
chat = model.start_chat()
|
35 |
|
36 |
+
def get_local_file_path(img_file="problem1.png"):
|
37 |
"""
|
38 |
Returns the path to the local PDF file.
|
39 |
"""
|
40 |
try:
|
41 |
+
file_path = os.path.join("problems", img_file)
|
42 |
+
if not os.path.exists(file_path):
|
43 |
+
raise FileNotFoundError(f"{file_path} does not exist.")
|
44 |
+
return file_path
|
45 |
except Exception as e:
|
46 |
+
st.error(f"Failed to find the local file: {e}")
|
47 |
st.stop() # Stop if the file is not found
|
48 |
|
49 |
# Initialize conversation history in Streamlit session state
|
|
|
52 |
if "uploaded_file_part" not in st.session_state: # Store the file *part*
|
53 |
st.session_state.uploaded_file_part = None
|
54 |
if "uploaded_pdf_path" not in st.session_state:
|
55 |
+
st.session_state.uploaded_pdf_path = get_local_file_path()
|
56 |
|
57 |
+
def multimodal_prompt(pdf_path, text_prompt, file_type="PDF"):
|
58 |
"""
|
59 |
Sends a multimodal prompt to Gemini, handling file uploads efficiently.
|
60 |
Args:
|
61 |
+
pdf_path: The path to the file (PDF or image).
|
62 |
text_prompt: The text prompt for the model.
|
63 |
+
file_type: "PDF" or "image" to specify the file type.
|
64 |
Returns:
|
65 |
The model's response as a string, or an error message.
|
66 |
"""
|
67 |
try:
|
68 |
+
if file_type == "PDF":
|
69 |
+
mime_type = "application/pdf"
|
70 |
+
elif file_type == "image":
|
71 |
+
import mimetypes
|
72 |
+
mime_type, _ = mimetypes.guess_type(pdf_path)
|
73 |
+
if mime_type is None:
|
74 |
+
return "Could not determine MIME type for image. Please check the file path or type."
|
75 |
+
else:
|
76 |
+
return "Invalid file_type. Must be 'PDF' or 'image'."
|
77 |
+
|
78 |
+
pdf_part = genai.upload_file(pdf_path, mime_type=mime_type)
|
79 |
+
prompt = [text_prompt, pdf_part] # First turn includes the actual file
|
80 |
|
81 |
response = chat.send_message(prompt)
|
82 |
|
83 |
# Update conversation history
|
84 |
+
st.session_state.conversation_history.append({"role": "user", "content": text_prompt, "has_file": True})
|
85 |
st.session_state.conversation_history.append({"role": "assistant", "content": response.text})
|
86 |
return response.text
|
87 |
|
88 |
except Exception as e:
|
89 |
return f"An error occurred: {e}"
|
90 |
|
91 |
+
def get_equation(response):
|
92 |
+
# Remove the ```json and ``` and extra spaces.
|
93 |
+
try:
|
94 |
+
json_string = response.replace('```json', '').replace('```', '').strip()
|
95 |
+
|
96 |
+
# Parse the JSON string into a Python list.
|
97 |
+
problems_list = json.loads(json_string)
|
98 |
+
|
99 |
+
# return the first item found
|
100 |
+
return problems_list[0]
|
101 |
+
|
102 |
+
except json.JSONDecodeError:
|
103 |
+
st.error("Invalid JSON format in the response.")
|
104 |
+
return None
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"An unexpected error occurred: {e}")
|
107 |
+
return None
|
108 |
+
|
109 |
+
if "problem_step" not in st.session_state:
|
110 |
+
st.session_state.problem_step = 0
|
111 |
|
112 |
# --- Main Page ---
|
113 |
st.title("📚❓Problem Solving Tutor")
|
|
|
116 |
Replace this placeholder with the actual text.
|
117 |
"""
|
118 |
|
119 |
+
with st.spinner("Loading the problem..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
if st.session_state.get("uploaded_pdf_path") is None:
|
121 |
+
st.session_state.uploaded_pdf_path = get_local_file_path("problem1.png")
|
122 |
|
123 |
filepath = st.session_state.uploaded_pdf_path
|
124 |
+
response = multimodal_prompt(filepath, TEXT_PROMPT, file_type="image")
|
125 |
+
|
126 |
+
# --- Display the image ---
|
127 |
+
st.image(filepath, caption="Problem Image", use_container_width=True)
|
128 |
+
|
129 |
+
equation = get_equation(response)
|
130 |
+
st.write(f"**Equation:** {equation}")
|
131 |
+
|
132 |
+
problem_step = st.session_state.problem_step
|
133 |
+
if problem_step == 0:
|
134 |
+
#Show instructions to submit the answer
|
135 |
+
st.write("Please write down your answer in a piece of paper. Take a picture of the paper and submit it in the next step.")
|
136 |
+
st.write("Click the button below to proceed.")
|
137 |
+
img_file_buffer = st.camera_input("Take a picture of your answer.")
|
138 |
+
|
139 |
+
if img_file_buffer is not None:
|
140 |
+
# process the answer
|
141 |
+
st.write("Processing your answer...")
|
142 |
+
|
143 |
+
# Save the image to a temporary file
|
144 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
145 |
+
temp_file.write(img_file_buffer.read())
|
146 |
+
image_path = temp_file.name
|
147 |
+
st.write("Image saved to:", image_path)
|
148 |
+
|
149 |
+
# create the text prompt
|
150 |
+
text_prompt = """Use the provided image. The image shows,
|
151 |
+
my answer to the problem. If the image is not clear ask for another image and do not perform
|
152 |
+
any of the following instructions. If the image is clear, evaluate the answer as either
|
153 |
+
correct or incorrect. If the answer is incorrect, do not provide the correct answer.
|
154 |
+
Provide feedback how can the student improve their answer.
|
155 |
+
If the answer is correct, provide feedback that the answer is correct and discuss the solution.
|
156 |
+
If the student used the factoring method, ask the student to try again and next time use the
|
157 |
+
quadratic formula method. The goal is to solve the problem using the quadratic formula method do not
|
158 |
+
ask the student to use the factoring method.
|
159 |
+
"""
|
160 |
+
|
161 |
+
if st.button("Ask Tutor for Feedback"):
|
162 |
+
if text_prompt:
|
163 |
+
with st.spinner("AI is thinking..."):
|
164 |
+
response = multimodal_prompt(image_path, text_prompt, file_type="image")
|
165 |
+
st.markdown(response)
|
166 |
+
|
167 |
+
if st.button("Next"):
|
168 |
+
# Evaluate the response
|
169 |
+
if "Correct" in response:
|
170 |
+
st.write("Correct! 🎉")
|
171 |
+
st.session_state.problem_step = 1
|
172 |
+
else:
|
173 |
+
st.write("Incorrect. 😞")
|
174 |
+
st.session_state.problem_step = 0
|
175 |
+
|
176 |
+
|
177 |
+
else:
|
178 |
+
st.write("Please take a picture of your answer.")
|
179 |
|
180 |
|
181 |
st.markdown("Visit our Hugging Face Space!")
|
problems/problem1.png
ADDED
![]() |
problems/problem2.png
ADDED
![]() |
problems/problem3.png
ADDED
![]() |
problems/problem4.png
ADDED
![]() |
problems/problem5.png
ADDED
![]() |