File size: 23,113 Bytes
5f097cc
03dba14
0807180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03dba14
 
0807180
03dba14
 
 
 
 
 
 
 
 
5f097cc
03dba14
0807180
 
03dba14
 
 
 
 
c74f24a
0807180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2e7d60
 
 
 
 
0807180
 
 
 
 
 
 
 
e2e7d60
0807180
e2e7d60
0807180
 
 
e2e7d60
0807180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74f24a
0807180
 
c74f24a
 
0807180
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import streamlit as st
import sqlite3
import time
import datetime
from PIL import Image
import google.generativeai as genai
import os
from reportlab.pdfgen import canvas
from reportlab.lib.pagesizes import A4, letter 
from io import BytesIO
import tempfile
import json
import re
from reportlab.platypus import Paragraph, Frame, Spacer
from reportlab.lib.styles import getSampleStyleSheet
import shutil

MODEL_ID = "gemini-2.0-flash-exp" 
api_key = os.getenv("GEMINI_API_KEY")
model_id = MODEL_ID
genai.configure(api_key=api_key)
enable_stream = False

if "model" not in st.session_state:
    st.session_state.model = genai.GenerativeModel(MODEL_ID)

if "chat" not in st.session_state:
    st.session_state.chat = st.session_state.model.start_chat()

def get_system_instruction(username):
    """ Retrieves the system instruction for the user from the database. """
    conn = sqlite3.connect('users.db')
    c = conn.cursor()
    c.execute('SELECT instruction FROM system_instructions WHERE username=?', (username,))
    instruction = c.fetchone()
    conn.close()
    if instruction:
        return instruction[0]
    else:
        return "Default system instruction."

def save_user_prompt(username, prompt_time, prompt_type):
    """ Saves the user prompt to the database for monitoring purposes. """

    conn = sqlite3.connect('users.db')
    c = conn.cursor()
    c.execute('INSERT INTO user_prompts(username, prompt_time, prompt_type) VALUES (?,?,?)', (username, prompt_time, prompt_type))
    conn.commit()
    conn.close()

def merge_json_strings(json_str1, json_str2):
    """
    Merges two JSON strings into one, handling potential markdown tags.

    Args:
        json_str1: The first JSON string, potentially with markdown tags.
        json_str2: The second JSON string, potentially with markdown tags.

    Returns:
        A cleaned JSON string representing the merged JSON objects.
    """

    # Clean the JSON strings by removing markdown tags
    cleaned_json_str1 = _clean_markdown(json_str1)
    cleaned_json_str2 = _clean_markdown(json_str2)

    try:
        # Parse the cleaned JSON strings into Python dictionaries
        data1 = json.loads(cleaned_json_str1)
        data2 = json.loads(cleaned_json_str2)

        # Merge the dictionaries
        merged_data = _merge_dicts(data1, data2)

        # Convert the merged dictionary back into a JSON string
        return json.dumps(merged_data, indent=2)
    except json.JSONDecodeError as e:
        return f"Error decoding JSON: {e}"


def _clean_markdown(text):
    """
    Removes markdown tags from a string if they exist. 
    Otherwise, returns the original string unchanged.

    Args:
        text: The input string.

    Returns:
        The string with markdown tags removed, or the original string 
        if no markdown tags were found.
    """
    try:
        # Check if the string contains markdown 
        if re.match(r"^```json\s*", text) and re.search(r"\s*```$", text):
            # Remove leading ```json
            text = re.sub(r"^```json\s*", "", text) 
            # Remove trailing ```
            text = re.sub(r"\s*```$", "", text) 
        return text
    except Exception as e:
        # Log the error 
        st.error(f"Error cleaning markdown: {e}") 
        return None

def _merge_dicts(data1, data2):
    """
    Recursively merges two data structures.

    Handles merging of dictionaries and lists. 
    For dictionaries, if a key exists in both and both values are dictionaries 
    or lists, they are merged recursively. Otherwise, the value from data2 is used.
    For lists, the lists are concatenated.

    Args:
        data1: The first data structure (dictionary or list).
        data2: The second data structure (dictionary or list).

    Returns:
        The merged data structure.

    Raises:
        ValueError: If the data types are not supported for merging.
    """
    if isinstance(data1, dict) and isinstance(data2, dict):
        for key, value in data2.items():
            if key in data1 and isinstance(data1[key], (dict, list)) and isinstance(value, type(data1[key])):
                _merge_dicts(data1[key], value)
            else:
                data1[key] = value
        return data1
    elif isinstance(data1, list) and isinstance(data2, list):
        return data1 + data2
    else:
        raise ValueError("Unsupported data types for merging")

def create_json(metadata, content):
    """
    Creates a JSON string combining metadata and content.

    Args:
        metadata: A dictionary containing metadata information.
        content: A dictionary containing the quiz content.

    Returns:
        A string representing the combined JSON data.
    """

    # Create metadata with timestamp
    metadata = {
        "subject": metadata.get("subject", ""),
        "topic": metadata.get("topic", ""),
        "num_questions": metadata.get("num_questions", 0),
        "exam_type": metadata.get("exam_type", ""),
        "timestamp": datetime.datetime.now().isoformat()
    }

    # Combine metadata and content
    combined_data = {"metadata": metadata, "content": content}

    # Convert to JSON string
    json_string = json.dumps(combined_data, indent=4)

    return json_string

def create_pdf(data):
    """Creates a PDF file with text wrapping for quiz content."""
    try:
        # Load the JSON data
        data = json.loads(data)

        if 'metadata' not in data or 'content' not in data:
            st.error("Error: Invalid data format. Missing 'metadata' or 'content' keys.")
            return None

        metadata = data['metadata']
        content = data['content']

        # Validate metadata
        required_metadata_keys = ['subject', 'topic', 'exam_type', 'num_questions']
        if not all(key in metadata for key in required_metadata_keys):
            st.error("Error: Invalid metadata format. Missing required keys.")
            return None

        # Create a unique filename with timestamp
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        pdf_filename = f"quiz_output_{timestamp}.pdf"

        # Get the temporary directory
        temp_dir = tempfile.gettempdir()
        pdf_path = os.path.join(temp_dir, pdf_filename)

        c = canvas.Canvas(pdf_path, pagesize=A4)
        c.setFont("Helvetica", 10)

        exam_type = metadata['exam_type']

        styles = getSampleStyleSheet()
        style_normal = styles["Normal"]

        y_position = 750
        line_height = 15
        frame_width = 500
        first_page = True

        for idx, q in enumerate(content):
            if not isinstance(q, dict):
                st.error(f"Error: Invalid question format at index {idx}. Skipping...")
                continue

            if first_page:
                # Print metadata once
                for key, label in [("subject", "Subject"), ("topic", "Topic"),
                                                ("exam_type", "Type"), ("num_questions", "Number of Questions")]:
                    c.drawString(50, y_position, f"{label}: {metadata[key]}")
                    y_position -= line_height

                y_position -= line_height  # Extra space before questions
                first_page = False

            # Print question number
            question_text = f"{idx+1}. "
            c.drawString(50, y_position, question_text)
            x_position = 70  # Adjust starting position for question text

            # --- Changes for better text flow ---
            # Split the question into words
            words = q.get('question', q.get('statement', '')).split() 
            current_line = ""
            for word in words:
                temp_line = current_line + " " + word
                text_width = c.stringWidth(temp_line, "Helvetica", 10)
                if text_width <= frame_width:
                    current_line = temp_line
                else:
                    c.drawString(x_position, y_position, current_line)
                    y_position -= line_height
                    current_line = word
                    if y_position < 50:
                        c.showPage()
                        c.setFont("Helvetica", 10)
                        y_position = 750
            # Print the last line of the question
            c.drawString(x_position, y_position, current_line)
            y_position -= line_height
            # --- End of changes ---

            if exam_type == "Multiple Choice":
                # Validate question structure
                required_question_keys = ['question', 'options', 'correct_answer']
                if not all(key in q for key in required_question_keys):
                    st.error(f"Error: Invalid question format at index {idx}. Skipping...")
                    continue

                # Print options
                for option_idx, option in enumerate(q['options'], ord('a')):
                    c.drawString(70, y_position, f"{chr(option_idx)}) {option}")
                    y_position -= line_height
                    if y_position < 50:
                        c.showPage()
                        c.setFont("Helvetica", 10)
                        y_position = 750

                # Print correct answer
                c.drawString(70, y_position, f"Correct Answer: {q['correct_answer']}")
                y_position -= line_height * 2

            elif exam_type == "True or False":
                # Validate question structure
                required_question_keys = ['statement', 'options', 'correct_answer']
                if not all(key in q for key in required_question_keys):
                    st.error(f"Error: Invalid question format at index {idx}. Skipping...")
                    continue

                # Print options
                for option in q['options']:
                    c.drawString(70, y_position, f"{option}")
                    y_position -= line_height
                    if y_position < 50:
                        c.showPage()
                        c.setFont("Helvetica", 10)
                        y_position = 750

                # Print correct answer
                c.drawString(70, y_position, f"Correct Answer: {q['correct_answer']}")
                y_position -= line_height * 2

            elif exam_type in ["Short Response", "Essay Type"]:
                # Validate question structure
                required_question_keys = ['question', 'correct_answer']
                if not all(key in q for key in required_question_keys):
                    st.error(f"Error: Invalid question format at index {idx}. Skipping...")
                    continue

                # Print correct answer 
                answer_text = f"Correct Answer: {q['correct_answer']}"
                
                # --- Changes for better text flow ---
                # Split the answer into words
                words = answer_text.split()
                current_line = ""
                for word in words:
                    temp_line = current_line + " " + word
                    text_width = c.stringWidth(temp_line, "Helvetica", 10)
                    if text_width <= frame_width:
                        current_line = temp_line
                    else:
                        c.drawString(x_position, y_position, current_line)
                        y_position -= line_height
                        current_line = word
                        if y_position < 50:
                            c.showPage()
                            c.setFont("Helvetica", 10)
                            y_position = 750
                # Print the last line of the answer
                c.drawString(x_position, y_position, current_line)
                y_position -= line_height * 2
                # --- End of changes ---

            if y_position < 50:
                c.showPage()
                c.setFont("Helvetica", 10)
                y_position = 750

        # Add the notice at the end
        notice = "This exam was generated by the WVSU Exam Maker (c) 2025 West Visayas State University"
        c.drawString(50, y_position, notice)

        c.save()
        return pdf_path

    except Exception as e:
        st.error(f"Error creating PDF: {e}")
        return None
    
def generate_quiz_content(data):
    """
    Separates the metadata and content from a JSON string containing exam data.
    Creates a markdown formatted text that contains the exam metadata and 
    enumerates the questions, options and answers nicely formatted for readability.

    Args:
      data: A JSON string containing the exam data.

    Returns:
      A markdown formatted string.
    """
    data = json.loads(data)
    metadata = data["metadata"]
    content = data["content"]
    exam_type = metadata["exam_type"]
    if exam_type == "Multiple Choice":
        md_text = f"""# {metadata['subject']} - {metadata['topic']}

**Exam Type:** {metadata['exam_type']}  
**Number of Questions:** {metadata['num_questions']}  
**Timestamp:** {metadata['timestamp']}

---

"""
        for i, q in enumerate(content):
            md_text += f"""Question {i+1}:
            {q['question']}

"""
            for j, option in enumerate(q['options'], ord('a')):
                md_text += f"""{chr(j)}. {option}  

"""
            md_text += f"""**Correct Answer:** {q['correct_answer']}

---

"""
        md_text += """This exam was generated by the WVSU Exam Maker
            (c) 2025 West Visayas State University
"""
            
    elif exam_type == "True or False":
        md_text = f"""# {metadata['subject']} - {metadata['topic']}

**Exam Type:** {metadata['exam_type']}  
**Number of Questions:** {metadata['num_questions']}  
**Timestamp:** {metadata['timestamp']}

---

"""

        for i, q in enumerate(content):
            md_text += f"""Statement {i+1}:

{q['statement']}

"""
            for j, option in enumerate(q['options'], ord('a')):
                md_text += f"""{option}  
"""

            md_text += f"""**Correct Answer:** {q['correct_answer']}

---
"""
        md_text += """This exam was generated by the WVSU Exam Maker
(c) 2025 West Visayas State University"""

    elif exam_type == "Short Response" or exam_type == "Essay Type":
        md_text = f"""# {metadata['subject']} - {metadata['topic']}

**Exam Type:** {metadata['exam_type']}  
**Number of Questions:** {metadata['num_questions']}  
**Timestamp:** {metadata['timestamp']}

---

"""

        for i, q in enumerate(content):
            md_text += f"""Question {i+1}:

{q['question']}

"""
            md_text += f"""**Correct Answer:** {q['correct_answer']}

---
"""
        md_text += """This exam was generated by the WVSU Exam Maker
(c) 2025 West Visayas State University"""

    return md_text
    
def generate_metadata(subject, topic, num_questions, exam_type):
    """Generates quiz metadata as a dictionary combining num_questions, 
    exam_type, and timestamp.

    Args:
        num_questions: The number of questions in the exam (int).
        exam_type: The type of exam (str).

    Returns:
        A dictionary containing the quiz metadata.
    """

    # Format the timestamp
    timestamp = datetime.datetime.now()
    formatted_timestamp = timestamp.strftime("%Y-%m-%d %H:%M:%S") 
    
    metadata = {
        "subject": subject,
        "topic": topic,
        "num_questions": num_questions,
        "exam_type": exam_type,
        "timestamp": formatted_timestamp
    }

    return metadata

def generate_text(prompt):
    """Generates text based on the  prompt."""
    try:
            
        # Send a text prompt to Gemini API
        chat = st.session_state.chat
        response = chat.send_message(
            [
                prompt
            ],
            stream=enable_stream  
        )

        return response.text
   
    except Exception as e:
        st.error(f"An error occurred while generating text: {e}")
        return None

def show_text_prompt():
    st.subheader("Text Prompt")

    username = st.session_state["username"]
    st.write(f"Welcome, {username}! This page allows you to generate questions based on user inputs.")

    # Display username and logout button on every page
    st.sidebar.write(f"Current user: {st.session_state['username']}")

    # User inputs
    # Course selection
    course = st.selectbox("Select Course", 
                        ["Diploma in Teaching", 
                        "Post Baccalaureate Diploma in Early Childhood Education", 
                        "Master of Arts in Education - Language Teaching (English)", 
                        "Master in Education major in Early Childhood Education"])


    # Year level selection
    year_level = st.selectbox("Select Year Level", 
                            ["1st Year", 
                            "2nd Year", 
                            "3rd Year", 
                            "4th Year"])

     # Subject selection
    subject = st.text_input("Enter Subject", 
                        "e.g.,The Teaching Profession, Facilitating Learner-Centered Teaching")

    # Topic selection
    topic = st.text_input("Enter Topic", 
                        "e.g., Teacher as a professional, Introduction to Learner-Centered Teaching")

    # Question type selection
    question_type = st.selectbox("Select Question Type", 
                                ["Multiple Choice", 
                                "True or False", 
                                "Short Response", 
                                "Essay Type"])

    difficulty = st.selectbox("Select Difficulty",["easy","average","hard"])

    #number of questions to generate
    if question_type != "Essay Type":
        num_questions = st.selectbox("Number of Questions to Generate",
                                [10, 20, 30, 40, 50])  
    else:
        num_questions = st.selectbox("Number of Questions to Generate",
                                [1, 2, 3, 4, 5]) 

    # Combine user inputs into a prompt
    prompt = f"""Refer to the uploaded document. Generate a {question_type} question for a {year_level} {course} student
                    in {subject} on the topic of {topic} with a {difficulty} difficulty level.
                    The questions should require higher order thinking skills. 
                    """

    if question_type == "Multiple Choice":    
        prompt += """Provide 4 choices. Provide the correct answer in the format 'Answer: A'.
        Use the following JSON format for each question:
        [{
        "question": "Your question here?",
        "options": ["Option A", "Option B", "Option C", "Option D"],
        "correct_answer": "full text of the correct answer"
        }, ... more questions]
        Ensure that the response only contains the JSON array of questions and nothing else.
        """
    elif question_type == "True or False":
        prompt += """Indicate whether the statement is true or false. Keep the statement brief and concise.
                    Use the following JSON format for each question:
                    [{
                    "statement": "Your statement here",
                    "options": ["True", "False"],
                    "correct_answer": True"
                    }, ... more questions]
                    Ensure that the response only contains the JSON array of questions and nothing else.    
                    """   
    elif question_type == "Short Response":
        prompt += """Create question that require a word or short phrase as answer.  Use the following JSON format for each question:
                    [{
                    "question": "Your question here?",
                    "correct_answer": A word or phrase"
                    },  ... more questions]
                    Ensure that the response only contains the JSON array of questions and nothing else.
                    """
    elif question_type == "Essay Type":
        prompt += """Create questions that require a short essay between 300 to 500 words. 
                    Provide a detailed answer. Use the following JSON format for each question:
                    [{
                    "question": "Your question here?",
                    "correct_answer": The essay answer goes here."
                    }, ... more questions]
                    Ensure that the response only contains the JSON array of questions and nothing else.
                    """

    if not question_type == "Essay Type":
        prompt += f"Generate 10 questions. Do not repeat questions you have already given in previous prompts. Exclude markdown tags in the response."
    else:
        prompt += f" Generate {num_questions} questions. Do not repeat questions you have already given in previous prompts. Exclude markdown tags in the response"  

    full_quiz = ""    
    
    # Send button
    if st.button("Generate Questions"):

        if question_type == "Essay Type":
            #prompt once
            with st.spinner('Generating questions...'):
                full_quiz = _clean_markdown(generate_text(prompt))  

        else:
            if num_questions == 10:

                #prompt once
                with st.spinner('Generating questions...'):
                    full_quiz = _clean_markdown(generate_text(prompt))
            else:
                #prompt multiple times
                times = num_questions//10
                for i in range(times):
                    with st.spinner('Generating questions...'):
                        response = generate_text(prompt)  

                        if i==0:
                            full_quiz = _clean_markdown(response)
                        else:                        
                            full_quiz = merge_json_strings(full_quiz, response) 

        metadata = generate_metadata(subject, topic, num_questions, question_type)

        try:
            # Attempt to load the string as JSON to validate it            
            content = json.loads(full_quiz)
        except json.JSONDecodeError:
            st.error("Error: Invalid JSON string for quiz content.")
            st.stop()

        json_string = create_json(metadata, content)

        quiz_markdown = generate_quiz_content(json_string)
        st.markdown(quiz_markdown)

        pdf_path = create_pdf(json_string)
        
        if pdf_path:
            """Click the button to download the generated PDF."""
            try:
                with open(pdf_path, "rb") as f:
                    st.download_button("Download PDF", f, file_name=os.path.basename(pdf_path))
            except Exception as e:
                st.error(f"Error handling file download: {e}")
        else:
            st.error("Failed to generate the PDF. Please try again.")

        #record the prompt for monitoring
        save_user_prompt(username, datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "Multimodal")

if st.session_state["authenticated"]:
    show_text_prompt()

else:
    if not st.session_state["is_starting"]:
        st.write("You are not authenticated. Please log in to access this page.")