Spaces:
Sleeping
Sleeping
save changes
Browse files- __pycache__/utils.cpython-313.pyc +0 -0
- app.py +80 -128
- backup.py +204 -0
- model_repo +1 -0
- requirements.txt +3 -2
- utils.py +53 -0
__pycache__/utils.cpython-313.pyc
ADDED
Binary file (3.24 kB). View file
|
|
app.py
CHANGED
@@ -7,113 +7,72 @@ from torch.utils.data import DataLoader
|
|
7 |
from datasets import load_dataset
|
8 |
from huggingface_hub import HfApi, Repository
|
9 |
import os
|
|
|
|
|
|
|
10 |
|
11 |
# Hugging Face Hub credentials
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
-
MODEL_REPO_ID = "louiecerv/amer_sign_lang_data_augmentation"
|
14 |
-
DATASET_REPO_ID = "louiecerv/american_sign_language"
|
15 |
|
16 |
# Device configuration
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
self.
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def forward(self, x):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
- cnn
|
51 |
-
license: apache-2.0
|
52 |
-
datasets:
|
53 |
-
Network (CNN) designed to recognize American Sign Language (ASL) letters from images. It was trained on the `louiecerv/american_sign_language` dataset.
|
54 |
-
|
55 |
-
## Model Description
|
56 |
-
|
57 |
-
The model consists of two convolutional layers followed by max-pooling layers, a flattening layer, and two fully connected layers. It is designed to classify images of ASL letters into 25 classes (A-Y).
|
58 |
-
|
59 |
-
## Intended Uses & Limitations
|
60 |
-
|
61 |
-
This model is intended for educational purposes and as a demonstration of image classification using CNNs. It is not suitable for real-world applications without further validation and testing.
|
62 |
-
|
63 |
-
## How to Use
|
64 |
-
|
65 |
-
```python
|
66 |
-
import torch
|
67 |
-
from torchvision import transforms
|
68 |
-
from PIL import Image
|
69 |
-
|
70 |
-
# Load the model
|
71 |
-
model = CNN()
|
72 |
-
model.load_state_dict(torch.load("path_to_model/pytorch_model.bin"))
|
73 |
-
model.eval()
|
74 |
-
|
75 |
-
# Preprocess the image
|
76 |
-
transform = transforms.Compose([
|
77 |
-
transforms.Grayscale(num_output_channels=1),
|
78 |
-
transforms.Resize((28, 28)),
|
79 |
-
transforms.ToTensor(),
|
80 |
-
transforms.Normalize(mean=[0.5], std=[0.5])
|
81 |
-
])
|
82 |
-
image = Image.open("path_to_image").convert("RGB")
|
83 |
-
image = transform(image).unsqueeze(0)
|
84 |
-
|
85 |
-
# Make a prediction
|
86 |
-
with torch.no_grad():
|
87 |
-
output = model(image)
|
88 |
-
_, predicted = torch.max(output.data, 1)
|
89 |
-
print(f"Predicted ASL letter: {predicted.item()}")
|
90 |
-
```
|
91 |
-
|
92 |
-
## Training Data
|
93 |
-
|
94 |
-
The model was trained on the `louiecerv/american_sign_language` dataset, which contains images of ASL letters.
|
95 |
-
|
96 |
-
## Training Procedure
|
97 |
-
|
98 |
-
The model was trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 64. The training process included 5 epochs.
|
99 |
-
|
100 |
-
## Evaluation Results
|
101 |
-
|
102 |
-
The model achieved an accuracy of 92% on the validation set.
|
103 |
-
"""
|
104 |
-
with open("model_repo/README.md", "w") as f:
|
105 |
-
f.write(model_card)
|
106 |
|
107 |
# Streamlit app
|
108 |
def main():
|
109 |
st.title("American Sign Language Recognition")
|
|
|
|
|
|
|
|
|
110 |
|
111 |
# Load the dataset from Hugging Face Hub
|
112 |
dataset = load_dataset(DATASET_REPO_ID)
|
113 |
|
114 |
-
# Data loaders with preprocessing:
|
115 |
-
|
116 |
-
transforms.
|
|
|
|
|
|
|
|
|
117 |
])
|
118 |
|
119 |
def collate_fn(batch):
|
@@ -121,18 +80,18 @@ def main():
|
|
121 |
labels = []
|
122 |
for item in batch:
|
123 |
if 'pixel_values' in item and 'label' in item:
|
124 |
-
image = torch.tensor(item['pixel_values'])
|
125 |
label = item['label']
|
126 |
try:
|
127 |
-
image =
|
128 |
images.append(image)
|
129 |
labels.append(label)
|
130 |
except Exception as e:
|
131 |
print(f"Error processing image: {e}")
|
132 |
-
continue
|
133 |
|
134 |
-
if not images:
|
135 |
-
return torch.tensor([]), torch.tensor([])
|
136 |
|
137 |
images = torch.stack(images).to(device)
|
138 |
labels = torch.tensor(labels).long().to(device)
|
@@ -142,59 +101,52 @@ def main():
|
|
142 |
val_loader = DataLoader(dataset["validation"], batch_size=64, collate_fn=collate_fn)
|
143 |
|
144 |
# Model, loss, and optimizer
|
145 |
-
model =
|
146 |
criterion = nn.CrossEntropyLoss()
|
147 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
152 |
for epoch in range(num_epochs):
|
|
|
|
|
|
|
153 |
for i, (images, labels) in enumerate(train_loader):
|
154 |
-
if images.nelement() == 0:
|
155 |
continue
|
156 |
|
157 |
# Forward pass
|
158 |
outputs = model(images)
|
159 |
loss = criterion(outputs, labels)
|
|
|
160 |
|
161 |
# Backward and optimize
|
162 |
optimizer.zero_grad()
|
163 |
loss.backward()
|
164 |
optimizer.step()
|
165 |
|
166 |
-
if (i + 1) % 100 == 0:
|
167 |
-
st.write(f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{len(train_loader)}], Loss: {loss.item():.4f}')
|
168 |
-
|
169 |
-
# Validation
|
170 |
-
correct = 0
|
171 |
-
total = 0
|
172 |
-
with torch.no_grad():
|
173 |
-
for images, labels in val_loader:
|
174 |
-
if images.nelement() == 0: # Check if images tensor is empty
|
175 |
-
continue
|
176 |
-
outputs = model(images)
|
177 |
_, predicted = torch.max(outputs.data, 1)
|
178 |
total += labels.size(0)
|
179 |
correct += (predicted == labels).sum().item()
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
else:
|
185 |
-
st.write("No validation images were processed.")
|
186 |
|
187 |
-
|
188 |
-
if HF_TOKEN:
|
189 |
-
repo = Repository(local_dir="model_repo", clone_from=MODEL_REPO_ID, use_auth_token=HF_TOKEN)
|
190 |
-
model_path = os.path.join(repo.local_dir, "pytorch_model.bin")
|
191 |
-
torch.save(model.state_dict(), model_path)
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
-
main()
|
|
|
7 |
from datasets import load_dataset
|
8 |
from huggingface_hub import HfApi, Repository
|
9 |
import os
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import utils
|
13 |
|
14 |
# Hugging Face Hub credentials
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
MODEL_REPO_ID = "louiecerv/amer_sign_lang_data_augmentation"
|
17 |
+
DATASET_REPO_ID = "louiecerv/american_sign_language"
|
18 |
|
19 |
# Device configuration
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
st.write(f"Device: {device}")
|
22 |
+
|
23 |
+
# Define the new CNN model
|
24 |
+
IMG_HEIGHT = 28
|
25 |
+
IMG_WIDTH = 28
|
26 |
+
IMG_CHS = 1
|
27 |
+
N_CLASSES = 24
|
28 |
+
|
29 |
+
class MyConvBlock(nn.Module):
|
30 |
+
def __init__(self, in_ch, out_ch, dropout_p):
|
31 |
+
kernel_size = 3
|
32 |
+
super().__init__()
|
33 |
+
self.model = nn.Sequential(
|
34 |
+
nn.Conv2d(in_ch, out_ch, kernel_size, stride=1, padding=1),
|
35 |
+
nn.BatchNorm2d(out_ch),
|
36 |
+
nn.ReLU(),
|
37 |
+
nn.Dropout(dropout_p),
|
38 |
+
nn.MaxPool2d(2, stride=2)
|
39 |
+
)
|
40 |
|
41 |
def forward(self, x):
|
42 |
+
return self.model(x)
|
43 |
+
|
44 |
+
flattened_img_size = 75 * 3 * 3
|
45 |
+
|
46 |
+
# Input 1 x 28 x 28
|
47 |
+
base_model = nn.Sequential(
|
48 |
+
MyConvBlock(IMG_CHS, 25, 0), # 25 x 14 x 14
|
49 |
+
MyConvBlock(25, 50, 0.2), # 50 x 7 x 7
|
50 |
+
MyConvBlock(50, 75, 0), # 75 x 3 x 3
|
51 |
+
nn.Flatten(),
|
52 |
+
nn.Linear(flattened_img_size, 512),
|
53 |
+
nn.Dropout(.3),
|
54 |
+
nn.ReLU(),
|
55 |
+
nn.Linear(512, N_CLASSES)
|
56 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Streamlit app
|
59 |
def main():
|
60 |
st.title("American Sign Language Recognition")
|
61 |
+
|
62 |
+
# Move slider and button to sidebar
|
63 |
+
num_epochs = st.sidebar.slider("Number of Epochs", 1, 20, 5)
|
64 |
+
train_button = st.sidebar.button("Train Model")
|
65 |
|
66 |
# Load the dataset from Hugging Face Hub
|
67 |
dataset = load_dataset(DATASET_REPO_ID)
|
68 |
|
69 |
+
# Data loaders with preprocessing and data augmentation:
|
70 |
+
random_transforms = transforms.Compose([
|
71 |
+
transforms.RandomRotation(5),
|
72 |
+
transforms.RandomResizedCrop((IMG_WIDTH, IMG_HEIGHT), scale=(.9, 1), ratio=(1, 1)),
|
73 |
+
transforms.RandomHorizontalFlip(),
|
74 |
+
transforms.ColorJitter(brightness=.2, contrast=.5),
|
75 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
76 |
])
|
77 |
|
78 |
def collate_fn(batch):
|
|
|
80 |
labels = []
|
81 |
for item in batch:
|
82 |
if 'pixel_values' in item and 'label' in item:
|
83 |
+
image = torch.tensor(item['pixel_values'])
|
84 |
label = item['label']
|
85 |
try:
|
86 |
+
image = random_transforms(image)
|
87 |
images.append(image)
|
88 |
labels.append(label)
|
89 |
except Exception as e:
|
90 |
print(f"Error processing image: {e}")
|
91 |
+
continue
|
92 |
|
93 |
+
if not images:
|
94 |
+
return torch.tensor([]), torch.tensor([])
|
95 |
|
96 |
images = torch.stack(images).to(device)
|
97 |
labels = torch.tensor(labels).long().to(device)
|
|
|
101 |
val_loader = DataLoader(dataset["validation"], batch_size=64, collate_fn=collate_fn)
|
102 |
|
103 |
# Model, loss, and optimizer
|
104 |
+
model = base_model.to(device)
|
105 |
criterion = nn.CrossEntropyLoss()
|
106 |
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
107 |
|
108 |
+
loss_history = []
|
109 |
+
accuracy_history = []
|
110 |
+
|
111 |
+
if train_button:
|
112 |
for epoch in range(num_epochs):
|
113 |
+
total = 0
|
114 |
+
correct = 0
|
115 |
+
epoch_loss = 0
|
116 |
for i, (images, labels) in enumerate(train_loader):
|
117 |
+
if images.nelement() == 0:
|
118 |
continue
|
119 |
|
120 |
# Forward pass
|
121 |
outputs = model(images)
|
122 |
loss = criterion(outputs, labels)
|
123 |
+
epoch_loss += loss.item()
|
124 |
|
125 |
# Backward and optimize
|
126 |
optimizer.zero_grad()
|
127 |
loss.backward()
|
128 |
optimizer.step()
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
_, predicted = torch.max(outputs.data, 1)
|
131 |
total += labels.size(0)
|
132 |
correct += (predicted == labels).sum().item()
|
133 |
|
134 |
+
epoch_accuracy = 100 * correct / total
|
135 |
+
loss_history.append(epoch_loss / len(train_loader))
|
136 |
+
accuracy_history.append(epoch_accuracy)
|
|
|
|
|
137 |
|
138 |
+
st.write(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {epoch_loss / len(train_loader):.4f}, Accuracy: {epoch_accuracy:.2f}%')
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
# Plot loss and accuracy
|
141 |
+
fig, ax1 = plt.subplots()
|
142 |
+
ax2 = ax1.twinx()
|
143 |
+
ax1.plot(loss_history, 'g-', label='Loss')
|
144 |
+
ax2.plot(accuracy_history, 'b-', label='Accuracy')
|
145 |
+
ax1.set_xlabel('Epoch')
|
146 |
+
ax1.set_ylabel('Loss', color='g')
|
147 |
+
ax2.set_ylabel('Accuracy (%)', color='b')
|
148 |
+
plt.title('Training Loss and Accuracy')
|
149 |
+
st.pyplot(fig)
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
+
main()
|
backup.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from torchvision import transforms
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from datasets import load_dataset
|
8 |
+
from huggingface_hub import HfApi, Repository
|
9 |
+
import os
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import utils
|
13 |
+
|
14 |
+
# Hugging Face Hub credentials
|
15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
MODEL_REPO_ID = "louiecerv/amer_sign_lang_data_augmentation"
|
17 |
+
DATASET_REPO_ID = "louiecerv/american_sign_language"
|
18 |
+
|
19 |
+
# Device configuration
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
st.write(f"Device: {device}")
|
22 |
+
|
23 |
+
# Define the CNN model
|
24 |
+
class CNN(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(CNN, self).__init__()
|
27 |
+
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
|
28 |
+
self.relu1 = nn.ReLU()
|
29 |
+
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
|
30 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
31 |
+
self.relu2 = nn.ReLU()
|
32 |
+
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
|
33 |
+
self.flatten = nn.Flatten()
|
34 |
+
self.fc = nn.Linear(64 * 7 * 7, 128) # Adjusted for 28x28 images
|
35 |
+
self.relu3 = nn.ReLU()
|
36 |
+
self.fc2 = nn.Linear(128, 25) # 25 classes (A-Y)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
x = self.pool1(self.relu1(self.conv1(x)))
|
40 |
+
x = self.pool2(self.relu2(self.conv2(x)))
|
41 |
+
x = self.flatten(x)
|
42 |
+
x = self.relu3(self.fc(x))
|
43 |
+
x = self.fc2(x)
|
44 |
+
return x
|
45 |
+
|
46 |
+
# Create a model card
|
47 |
+
def create_model_card():
|
48 |
+
model_card = """
|
49 |
+
---
|
50 |
+
language: en
|
51 |
+
tags:
|
52 |
+
- image-classification
|
53 |
+
- deep-learning
|
54 |
+
- cnn
|
55 |
+
license: apache-2.0
|
56 |
+
datasets:
|
57 |
+
Network (CNN) designed to recognize American Sign Language (ASL) letters from images. It was trained on the `louiecerv/american_sign_language` dataset.
|
58 |
+
|
59 |
+
## Model Description
|
60 |
+
|
61 |
+
The model consists of two convolutional layers followed by max-pooling layers, a flattening layer, and two fully connected layers. It is designed to classify images of ASL letters into 25 classes (A-Y).
|
62 |
+
|
63 |
+
## Intended Uses & Limitations
|
64 |
+
|
65 |
+
This model is intended for educational purposes and as a demonstration of image classification using CNNs. It is not suitable for real-world applications without further validation and testing.
|
66 |
+
|
67 |
+
## How to Use
|
68 |
+
|
69 |
+
```python
|
70 |
+
import torch
|
71 |
+
from torchvision import transforms
|
72 |
+
from PIL import Image
|
73 |
+
|
74 |
+
# Load the model
|
75 |
+
model = CNN()
|
76 |
+
model.load_state_dict(torch.load("path_to_model/pytorch_model.bin"))
|
77 |
+
model.eval()
|
78 |
+
|
79 |
+
# Preprocess the image
|
80 |
+
transform = transforms.Compose([
|
81 |
+
transforms.Grayscale(num_output_channels=1),
|
82 |
+
transforms.Resize((28, 28)),
|
83 |
+
transforms.ToTensor(),
|
84 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
85 |
+
])
|
86 |
+
image = Image.open("path_to_image").convert("RGB")
|
87 |
+
image = transform(image).unsqueeze(0)
|
88 |
+
|
89 |
+
# Make a prediction
|
90 |
+
with torch.no_grad():
|
91 |
+
output = model(image)
|
92 |
+
_, predicted = torch.max(output.data, 1)
|
93 |
+
print(f"Predicted ASL letter: {predicted.item()}")
|
94 |
+
```
|
95 |
+
|
96 |
+
## Training Data
|
97 |
+
|
98 |
+
The model was trained on the `louiecerv/american_sign_language` dataset, which contains images of ASL letters.
|
99 |
+
|
100 |
+
## Training Procedure
|
101 |
+
|
102 |
+
The model was trained using the Adam optimizer with a learning rate of 0.001 and a batch size of 64. The training process included 5 epochs.
|
103 |
+
|
104 |
+
## Evaluation Results
|
105 |
+
|
106 |
+
The model achieved an accuracy of 92% on the validation set.
|
107 |
+
"""
|
108 |
+
with open("model_repo/README.md", "w") as f:
|
109 |
+
f.write(model_card)
|
110 |
+
|
111 |
+
# Streamlit app
|
112 |
+
def main():
|
113 |
+
st.title("American Sign Language Recognition")
|
114 |
+
|
115 |
+
# Load the dataset from Hugging Face Hub
|
116 |
+
dataset = load_dataset(DATASET_REPO_ID)
|
117 |
+
|
118 |
+
# Data loaders with preprocessing:
|
119 |
+
transform = transforms.Compose([
|
120 |
+
transforms.Normalize(mean=[0.5], std=[0.5]) # Adjust mean and std if needed
|
121 |
+
])
|
122 |
+
|
123 |
+
def collate_fn(batch):
|
124 |
+
images = []
|
125 |
+
labels = []
|
126 |
+
for item in batch:
|
127 |
+
if 'pixel_values' in item and 'label' in item:
|
128 |
+
image = torch.tensor(item['pixel_values']) # Convert to tensor
|
129 |
+
label = item['label']
|
130 |
+
try:
|
131 |
+
image = transform(image)
|
132 |
+
images.append(image)
|
133 |
+
labels.append(label)
|
134 |
+
except Exception as e:
|
135 |
+
print(f"Error processing image: {e}")
|
136 |
+
continue # Skip to the next image
|
137 |
+
|
138 |
+
if not images: # Check if the list is empty!
|
139 |
+
return torch.tensor([]), torch.tensor([]) # Return empty tensors if no images loaded
|
140 |
+
|
141 |
+
images = torch.stack(images).to(device)
|
142 |
+
labels = torch.tensor(labels).long().to(device)
|
143 |
+
return images, labels
|
144 |
+
|
145 |
+
train_loader = DataLoader(dataset["train"], batch_size=64, shuffle=True, collate_fn=collate_fn)
|
146 |
+
val_loader = DataLoader(dataset["validation"], batch_size=64, collate_fn=collate_fn)
|
147 |
+
|
148 |
+
# Model, loss, and optimizer
|
149 |
+
model = CNN().to(device)
|
150 |
+
criterion = nn.CrossEntropyLoss()
|
151 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
152 |
+
|
153 |
+
# Training loop
|
154 |
+
num_epochs = st.slider("Number of Epochs", 1, 20, 5) # Streamlit slider
|
155 |
+
if st.button("Train Model"):
|
156 |
+
for epoch in range(num_epochs):
|
157 |
+
for i, (images, labels) in enumerate(train_loader):
|
158 |
+
if images.nelement() == 0: # Check if images tensor is empty
|
159 |
+
continue
|
160 |
+
|
161 |
+
# Forward pass
|
162 |
+
outputs = model(images)
|
163 |
+
loss = criterion(outputs, labels)
|
164 |
+
|
165 |
+
# Backward and optimize
|
166 |
+
optimizer.zero_grad()
|
167 |
+
loss.backward()
|
168 |
+
optimizer.step()
|
169 |
+
|
170 |
+
if (i + 1) % 100 == 0:
|
171 |
+
st.write(f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}/{len(train_loader)}], Loss: {loss.item():.4f}')
|
172 |
+
|
173 |
+
# Validation
|
174 |
+
correct = 0
|
175 |
+
total = 0
|
176 |
+
with torch.no_grad():
|
177 |
+
for images, labels in val_loader:
|
178 |
+
if images.nelement() == 0: # Check if images tensor is empty
|
179 |
+
continue
|
180 |
+
outputs = model(images)
|
181 |
+
_, predicted = torch.max(outputs.data, 1)
|
182 |
+
total += labels.size(0)
|
183 |
+
correct += (predicted == labels).sum().item()
|
184 |
+
|
185 |
+
if total > 0:
|
186 |
+
accuracy = 100 * correct / total
|
187 |
+
st.write(f'Accuracy of the model on the validation images: {accuracy:.2f}%')
|
188 |
+
else:
|
189 |
+
st.write("No validation images were processed.")
|
190 |
+
|
191 |
+
# Save model to Hugging Face Hub
|
192 |
+
if HF_TOKEN:
|
193 |
+
repo = Repository(local_dir="model_repo", clone_from=MODEL_REPO_ID, use_auth_token=HF_TOKEN)
|
194 |
+
model_path = os.path.join(repo.local_dir, "pytorch_model.bin")
|
195 |
+
torch.save(model.state_dict(), model_path)
|
196 |
+
|
197 |
+
create_model_card()
|
198 |
+
repo.push_to_hub(commit_message="Trained model and model card", blocking=True)
|
199 |
+
st.write(f"Model and model card saved to {MODEL_REPO_ID}")
|
200 |
+
else:
|
201 |
+
st.warning("HF_TOKEN environment variable not set. Model not saved.")
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
main()
|
model_repo
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 3b1e03d8d415269d86b88c9df83295a9ef454bb5
|
requirements.txt
CHANGED
@@ -5,5 +5,6 @@ huggingface_hub
|
|
5 |
torch
|
6 |
torchvision
|
7 |
pandas
|
8 |
-
Pillow
|
9 |
-
scikit-learn
|
|
|
|
5 |
torch
|
6 |
torchvision
|
7 |
pandas
|
8 |
+
Pillow
|
9 |
+
scikit-learn
|
10 |
+
matplotlib
|
utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class MyConvBlock(nn.Module):
|
5 |
+
def __init__(self, in_ch, out_ch, dropout_p):
|
6 |
+
kernel_size = 3
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.model = nn.Sequential(
|
10 |
+
nn.Conv2d(in_ch, out_ch, kernel_size, stride=1, padding=1),
|
11 |
+
nn.BatchNorm2d(out_ch),
|
12 |
+
nn.ReLU(),
|
13 |
+
nn.Dropout(dropout_p),
|
14 |
+
nn.MaxPool2d(2, stride=2)
|
15 |
+
)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return self.model(x)
|
19 |
+
|
20 |
+
def get_batch_accuracy(output, y, N):
|
21 |
+
pred = output.argmax(dim=1, keepdim=True)
|
22 |
+
correct = pred.eq(y.view_as(pred)).sum().item()
|
23 |
+
return correct / N
|
24 |
+
|
25 |
+
|
26 |
+
def train(model, train_loader, train_N, random_trans, optimizer, loss_function):
|
27 |
+
loss = 0
|
28 |
+
accuracy = 0
|
29 |
+
|
30 |
+
model.train()
|
31 |
+
for x, y in train_loader:
|
32 |
+
output = model(random_trans(x))
|
33 |
+
optimizer.zero_grad()
|
34 |
+
batch_loss = loss_function(output, y)
|
35 |
+
batch_loss.backward()
|
36 |
+
optimizer.step()
|
37 |
+
|
38 |
+
loss += batch_loss.item()
|
39 |
+
accuracy += get_batch_accuracy(output, y, train_N)
|
40 |
+
print('Train - Loss: {:.4f} Accuracy: {:.4f}'.format(loss, accuracy))
|
41 |
+
|
42 |
+
def validate(model, valid_loader, valid_N, loss_function):
|
43 |
+
loss = 0
|
44 |
+
accuracy = 0
|
45 |
+
|
46 |
+
model.eval()
|
47 |
+
with torch.no_grad():
|
48 |
+
for x, y in valid_loader:
|
49 |
+
output = model(x)
|
50 |
+
|
51 |
+
loss += loss_function(output, y).item()
|
52 |
+
accuracy += get_batch_accuracy(output, y, valid_N)
|
53 |
+
print('Valid - Loss: {:.4f} Accuracy: {:.4f}'.format(loss, accuracy))
|