Spaces:
Sleeping
Sleeping
removed redundant codes
Browse files
app.py
CHANGED
@@ -57,15 +57,6 @@ def load_and_convert_to_hf_dataset(x, y, split="train"):
|
|
57 |
hf_dataset.set_format("torch") # Set format to PyTorch
|
58 |
return hf_dataset
|
59 |
|
60 |
-
# Load and convert dataframes to Hugging Face datasets
|
61 |
-
train_df = pd.read_csv("data/asl_data/sign_mnist_train.csv")
|
62 |
-
y_train = train_df.pop('label').values
|
63 |
-
x_train = train_df.values
|
64 |
-
|
65 |
-
valid_df = pd.read_csv("data/asl_data/sign_mnist_valid.csv")
|
66 |
-
y_valid = valid_df.pop('label').values
|
67 |
-
x_valid = valid_df.values
|
68 |
-
|
69 |
def upload_dataset_to_hub(dataset, repo_id):
|
70 |
api = HfApi(token=HF_TOKEN)
|
71 |
api.create_repo(repo_id, repo_type="dataset", exist_ok=True) # Create repo if it doesn't exist
|
@@ -160,14 +151,17 @@ if __name__ == "__main__":
|
|
160 |
st.write (about)
|
161 |
|
162 |
try:
|
|
|
|
|
163 |
train_df = pd.read_csv("data/asl_data/sign_mnist_train.csv")
|
164 |
y_train = train_df.pop('label').values
|
165 |
x_train = train_df.values
|
166 |
-
train_dataset = load_and_convert_to_hf_dataset(x_train, y_train, "train")
|
167 |
|
168 |
valid_df = pd.read_csv("data/asl_data/sign_mnist_valid.csv")
|
169 |
y_valid = valid_df.pop('label').values
|
170 |
x_valid = valid_df.values
|
|
|
|
|
171 |
valid_dataset = load_and_convert_to_hf_dataset(x_valid, y_valid, "validation")
|
172 |
|
173 |
# Create a DatasetDict
|
|
|
57 |
hf_dataset.set_format("torch") # Set format to PyTorch
|
58 |
return hf_dataset
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def upload_dataset_to_hub(dataset, repo_id):
|
61 |
api = HfApi(token=HF_TOKEN)
|
62 |
api.create_repo(repo_id, repo_type="dataset", exist_ok=True) # Create repo if it doesn't exist
|
|
|
151 |
st.write (about)
|
152 |
|
153 |
try:
|
154 |
+
|
155 |
+
# Load and convert dataframes to Hugging Face datasets
|
156 |
train_df = pd.read_csv("data/asl_data/sign_mnist_train.csv")
|
157 |
y_train = train_df.pop('label').values
|
158 |
x_train = train_df.values
|
|
|
159 |
|
160 |
valid_df = pd.read_csv("data/asl_data/sign_mnist_valid.csv")
|
161 |
y_valid = valid_df.pop('label').values
|
162 |
x_valid = valid_df.values
|
163 |
+
|
164 |
+
train_dataset = load_and_convert_to_hf_dataset(x_train, y_train, "train")
|
165 |
valid_dataset = load_and_convert_to_hf_dataset(x_valid, y_valid, "validation")
|
166 |
|
167 |
# Create a DatasetDict
|