File size: 5,505 Bytes
146f25a
 
c0f9b0f
146f25a
c0f9b0f
 
 
 
146f25a
c0f9b0f
146f25a
c0f9b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146f25a
 
 
c0f9b0f
146f25a
c0f9b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146f25a
 
c0f9b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146f25a
c0f9b0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import streamlit as st
import torch
import numpy as np
from PIL import Image
import pickle
import torchvision.transforms as transforms
from huggingface_hub import hf_hub_download
from datasets import load_dataset

# Model repository ID
MODEL_REPO_ID = "louiecerv/amer_sign_lang_neuralnet"
MODEL_FILENAME = "trained_model.pkl"  # The filename of your model on Hugging Face

# Load dataset from Hugging Face
DATASET_NAME = "louiecerv/american_sign_language"  # Replace with your dataset name
dataset = load_dataset(DATASET_NAME, split="train")

def preprocess_image(image: Image) -> tuple[torch.Tensor, Image]:
    """
    Preprocess the image by converting it to grayscale, resizing it to 28x28,
    normalizing the pixel values, and converting it to a tensor.

    Args:
        image (Image): The input image.

    Returns:
        tuple[torch.Tensor, Image]: A tuple containing the preprocessed image tensor and the processed PIL image.
    """
    try:
        transform = transforms.Compose([
            transforms.Grayscale(num_output_channels=1),
            transforms.Resize((28, 28)),
            transforms.ToTensor(),
            transforms.Normalize(mean=0.5, std=0.5)
        ])
        tensor_image = transform(image)

        # Convert the tensor back to a PIL Image for display
        tensor_image_pil = tensor_image.squeeze().cpu().numpy()  # Remove batch dimension and convert to numpy
        tensor_image_pil = (tensor_image_pil * 0.5 + 0.5) * 255  # Unnormalize
        tensor_image_pil = tensor_image_pil.astype(np.uint8)  # Convert to uint8 for PIL
        processed_image_pil = Image.fromarray(tensor_image_pil)

        return tensor_image, processed_image_pil
    except Exception as e:
        st.error(f"Error preprocessing image: {e}")
        return None, None

def load_model(repo_id: str, filename: str) -> torch.nn.Module:
    """
    Load the model from Hugging Face Hub.

    Args:
        repo_id (str): The repository ID of the model.
        filename (str): The filename of the model.

    Returns:
        torch.nn.Module: The loaded model.
    """
    try:
        model_path = hf_hub_download(repo_id=repo_id, filename=filename)
        with open(model_path, "rb") as f:
            model = pickle.load(f)
        return model
    except Exception as e:
        st.error(f"Error loading model: {e}")
        return None

def make_prediction(model: torch.nn.Module, image_tensor: torch.Tensor) -> str:
    """
    Make a prediction using the loaded model and the preprocessed image tensor.

    Args:
        model (torch.nn.Module): The loaded model.
        image_tensor (torch.Tensor): The preprocessed image tensor.

    Returns:
        str: The predicted letter.
    """
    try:
        model.eval()
        with torch.no_grad():
            # Add batch dimension if not already present
            if len(image_tensor.shape) == 3:
                image_tensor = image_tensor.unsqueeze(0)
            prediction = model(image_tensor)
        predicted_class = torch.argmax(prediction).item()
        predicted_letter = chr(predicted_class + ord('A'))
        return predicted_letter
    except Exception as e:
        st.error(f"Error making prediction: {e}")
        return None

def tensor_to_image(pixel_list):
    """Converts a tensor to a displayable image."""
    array = np.array(pixel_list).reshape(28, 28)
    array = (array * 0.5 + 0.5) * 255  # Assuming mean=0.5, std=0.5
    array = np.clip(array, 0, 255).astype(np.uint8)
    return Image.fromarray(array)

# Streamlit App
st.title("American Sign Language App")

# Create tabs
tabs = ["Dataset", "Prediction"]
selected_tab = st.sidebar.radio("Select Tab", tabs)

if selected_tab == "Dataset":
    st.header("Dataset")
    st.write("Displaying the first 20 images from the dataset.")

    # Create a grid layout
    cols = 5  # Number of columns
    rows = 4  # Number of rows
    num_images = cols * rows

    # Display images in a grid
    image_list = dataset[:num_images]["pixel_values"]
    labels = dataset[:num_images]["label"]

    # Display images using Streamlit columns
    for row in range(rows):
        columns = st.columns(cols)
        for col in range(cols):
            index = row * cols + col
            image = tensor_to_image(image_list[index])
            columns[col].image(image, caption=f"Label: {chr(labels[index] + ord('A'))}", use_container_width=True)

elif selected_tab == "Prediction":
    st.header("Prediction")
    st.write("Upload an image of an ASL letter.")

    # File uploader
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
        # Load and preprocess the image
        image = Image.open(uploaded_file).convert("RGB")  # Ensure RGB for consistent processing
        st.image(image, caption="Uploaded Image.", use_container_width=True)
        image_tensor, processed_image_pil = preprocess_image(image)

        if image_tensor is not None and processed_image_pil is not None:
            st.image(processed_image_pil, caption="Preprocessed Image.", use_container_width=True)  # Display processed image

            # Load the model
            model = load_model(repo_id=MODEL_REPO_ID, filename=MODEL_FILENAME)

            if model is not None:
                # Make a prediction
                predicted_letter = make_prediction(model, image_tensor)

                if predicted_letter is not None:
                    st.write(f"Predicted Letter: {predicted_letter}")