Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# %%writefile app.py
|
2 |
+
from setup_code import * # This imports everything from setup_code.py
|
3 |
+
|
4 |
+
general_greeting_num = 0
|
5 |
+
general_question_num = 1
|
6 |
+
machine_learning_num = 2
|
7 |
+
python_code_num = 3
|
8 |
+
obnoxious_num = 4
|
9 |
+
default_num = 5
|
10 |
+
|
11 |
+
query_classes = {'[General greeting]': general_greeting_num,
|
12 |
+
'[General question]': general_question_num,
|
13 |
+
'[Question about Machine Learning]': machine_learning_num,
|
14 |
+
'[Question about Python code]' : python_code_num,
|
15 |
+
'[Obnoxious statement]': obnoxious_num
|
16 |
+
}
|
17 |
+
|
18 |
+
query_classes_text = ", ".join(query_classes.keys())
|
19 |
+
|
20 |
+
class Classify_Agent:
|
21 |
+
def __init__(self, openai_client) -> None:
|
22 |
+
# TODO: Initialize the client and prompt for the Obnoxious_Agent
|
23 |
+
self.openai_client = openai_client
|
24 |
+
|
25 |
+
def classify_query(self, query):
|
26 |
+
prompt = f"Please classify this query in angle brackets <{query}> as one of the following in square brackets only: {query_classes_text}."
|
27 |
+
classification_response = get_completion(self.openai_client, prompt)
|
28 |
+
|
29 |
+
if classification_response != None and classification_response in query_classes.keys():
|
30 |
+
query_class = query_classes.get(classification_response, default_num)
|
31 |
+
# st.write(f"query <{query}>: {classification_response}")
|
32 |
+
|
33 |
+
return query_classes.get(classification_response, default_num)
|
34 |
+
else:
|
35 |
+
# st.write(f"query <{query}>: {classification_response}")
|
36 |
+
return default_num
|
37 |
+
|
38 |
+
class Relevant_Documents_Agent:
|
39 |
+
def __init__(self, openai_client) -> None:
|
40 |
+
# TODO: Initialize the Relevant_Documents_Agent
|
41 |
+
self.client = openai_client
|
42 |
+
|
43 |
+
def get_relevance(self, conversation) -> str:
|
44 |
+
pass
|
45 |
+
|
46 |
+
def get_relevant_docs(self, conversation, docs) -> str: # uses Query Agent to get relevant docs
|
47 |
+
pass
|
48 |
+
|
49 |
+
def is_relevant(self, matches_text, user_query_plus_conversation) -> bool:
|
50 |
+
prompt = f"Please confirm that the text in angle brackets: <{matches_text}>, is relevant to the text in double square brackets: [[{user_query_plus_conversation}]]. Return Yes or No"
|
51 |
+
response = get_completion(self.client, prompt)
|
52 |
+
|
53 |
+
return is_Yes(response)
|
54 |
+
|
55 |
+
class Query_Agent:
|
56 |
+
def __init__(self, pinecone_index, pinecone_index_python, openai_client, embeddings) -> None:
|
57 |
+
# TODO: Initialize the Query_Agent agent
|
58 |
+
self.pinecone_index = pinecone_index
|
59 |
+
self.pinecone_index_python = pinecone_index_python
|
60 |
+
self.openai_client = openai_client
|
61 |
+
self.embeddings = embeddings
|
62 |
+
|
63 |
+
def get_openai_embedding(self, text, model="text-embedding-ada-002"):
|
64 |
+
text = text.replace("\n", " ")
|
65 |
+
return self.openai_client.embeddings.create(input=[text], model=model).data[0].embedding
|
66 |
+
|
67 |
+
def query_vector_store(self, query, index=None, k=5) -> str:
|
68 |
+
if index == None:
|
69 |
+
index = self.pinecone_index
|
70 |
+
|
71 |
+
query_embedding = self.get_openai_embedding(query)
|
72 |
+
|
73 |
+
def get_namespace(index):
|
74 |
+
stat = index.describe_index_stats()
|
75 |
+
stat_dict_key = stat['namespaces'].keys()
|
76 |
+
|
77 |
+
stat_dict_key_list = list(stat_dict_key)
|
78 |
+
first_key = stat_dict_key_list[0]
|
79 |
+
|
80 |
+
return first_key
|
81 |
+
|
82 |
+
ns = get_namespace(index)
|
83 |
+
|
84 |
+
matches_text = get_top_k_text(index.query(
|
85 |
+
namespace=ns,
|
86 |
+
top_k=k,
|
87 |
+
vector=query_embedding,
|
88 |
+
include_values=True,
|
89 |
+
include_metadata=True
|
90 |
+
)
|
91 |
+
)
|
92 |
+
return matches_text
|
93 |
+
|
94 |
+
class Answering_Agent:
|
95 |
+
def __init__(self, openai_client) -> None:
|
96 |
+
# TODO: Initialize the Answering_Agent
|
97 |
+
self.client = openai_client
|
98 |
+
|
99 |
+
def generate_response(self, query, docs, conv_history, selected_mode):
|
100 |
+
# TODO: Generate a response to the user's query
|
101 |
+
prompt_for_gpt = f"Based on this text in angle brackets: <{docs}>, please summarize a response to this query: {query} in the context of this conversation: {conv_history}. Please use language appropriate for a {selected_mode}."
|
102 |
+
return get_completion(self.client, prompt_for_gpt)
|
103 |
+
|
104 |
+
def generate_image(self, text):
|
105 |
+
caption_prompt = f"Based on this text, repeated here in double square brackets for your reference: [[{text}]], please generate a simple caption that I can use with dall-e to generate an instructional image."
|
106 |
+
caption_text = get_completion(self.client, caption_prompt)
|
107 |
+
#st.write(caption_text)
|
108 |
+
image = Head_Agent.text_to_image(self.client, caption_text)
|
109 |
+
return image
|
110 |
+
|
111 |
+
class Head_Agent:
|
112 |
+
def __init__(self, openai_key, pinecone_key) -> None:
|
113 |
+
# TODO: Initialize the Head_Agent
|
114 |
+
self.openai_key = openai_key
|
115 |
+
self.pinecone_key = pinecone_key
|
116 |
+
self.selected_mode = ""
|
117 |
+
|
118 |
+
self.openai_client = OpenAI(api_key=self.openai_key)
|
119 |
+
self.pc = Pinecone(api_key=self.pinecone_key)
|
120 |
+
self.pinecone_index = self.pc.Index("index-600")
|
121 |
+
self.pinecone_index_python = self.pc.Index("index-py-files")
|
122 |
+
|
123 |
+
self.setup_sub_agents()
|
124 |
+
|
125 |
+
def setup_sub_agents(self):
|
126 |
+
# TODO: Setup the sub-agents
|
127 |
+
self.classify_agent = Classify_Agent(self.openai_client)
|
128 |
+
self.query_agent = Query_Agent(self.pinecone_index, self.pinecone_index_python, self.openai_client, None) # Pass embeddings if needed
|
129 |
+
self.answering_agent = Answering_Agent(self.openai_client)
|
130 |
+
self.relevant_documents_agent = Relevant_Documents_Agent(self.openai_client)
|
131 |
+
|
132 |
+
def process_query_response(self, user_query, query_topic):
|
133 |
+
# Retrieve the history related to the query_topic
|
134 |
+
conversation = []
|
135 |
+
index = self.pinecone_index
|
136 |
+
if query_topic == "ml":
|
137 |
+
conversation = Head_Agent.get_history_about('ml')
|
138 |
+
elif query_topic == 'python':
|
139 |
+
conversation = Head_Agent.get_history_about('python')
|
140 |
+
index = self.pinecone_index_python
|
141 |
+
|
142 |
+
# get matches from Query_Agent, which uses Pinecone
|
143 |
+
user_query_plus_conversation = f"The current query is: {user_query}"
|
144 |
+
if len(conversation) > 0:
|
145 |
+
conversation_text = "\n".join(conversation)
|
146 |
+
user_query_plus_conversation += f'The current conversation is: {conversation_text}'
|
147 |
+
|
148 |
+
# st.write(user_query_plus_conversation)
|
149 |
+
matches_text = self.query_agent.query_vector_store(user_query_plus_conversation, index)
|
150 |
+
|
151 |
+
if self.relevant_documents_agent.is_relevant(matches_text, user_query_plus_conversation):
|
152 |
+
#maybe here we can ask GPT to make up an answer if there is no match
|
153 |
+
response = self.answering_agent.generate_response(user_query, matches_text, conversation, self.selected_mode)
|
154 |
+
else:
|
155 |
+
response = "Sorry, I don't have relevant information to answer that query."
|
156 |
+
|
157 |
+
return response
|
158 |
+
|
159 |
+
@staticmethod
|
160 |
+
def get_conversation():
|
161 |
+
# ... (code for getting conversation history)
|
162 |
+
return Head_Agent.get_history_about()
|
163 |
+
|
164 |
+
@staticmethod
|
165 |
+
def get_history_about(topic=None):
|
166 |
+
history = []
|
167 |
+
|
168 |
+
for message in st.session_state.messages:
|
169 |
+
role = message["role"]
|
170 |
+
content = message["content"]
|
171 |
+
|
172 |
+
if topic == None:
|
173 |
+
if role == "user":
|
174 |
+
history.append(f"{content} ")
|
175 |
+
else:
|
176 |
+
if message["topic"] == topic:
|
177 |
+
history.append(f"{content} ")
|
178 |
+
|
179 |
+
# st.write(f"user history in get_conversation is {history}")
|
180 |
+
|
181 |
+
if history != None:
|
182 |
+
history = history[-2:]
|
183 |
+
|
184 |
+
return history
|
185 |
+
|
186 |
+
@staticmethod
|
187 |
+
def text_to_image(openai_client, text):
|
188 |
+
response = openai_client.images.generate(
|
189 |
+
model="dall-e-3",
|
190 |
+
prompt = text,
|
191 |
+
n=1,
|
192 |
+
size="1024x1024"
|
193 |
+
)
|
194 |
+
image_url = response.data[0].url
|
195 |
+
with urllib.request.urlopen(image_url) as image_url:
|
196 |
+
img = Image.open(BytesIO(image_url.read()))
|
197 |
+
|
198 |
+
return img
|
199 |
+
|
200 |
+
def main_loop_1(self):
|
201 |
+
# TODO: Run the main loop for the chatbot
|
202 |
+
st.title("Mini Project 2: Streamlit Chatbot")
|
203 |
+
|
204 |
+
# Check for existing session state variables
|
205 |
+
if "openai_model" not in st.session_state:
|
206 |
+
# ... (initialize model)
|
207 |
+
# st.session_state.openai_model = openai_client #'GPT-3.5-turbo'
|
208 |
+
st.session_state.openai_model = 'gpt-3.5-turbo'
|
209 |
+
|
210 |
+
if "messages" not in st.session_state:
|
211 |
+
# ... (initialize messages)
|
212 |
+
st.session_state.messages = []
|
213 |
+
|
214 |
+
# Define the selection options
|
215 |
+
modes = ['1st grade student', 'middle school student', 'high school student', 'college student', 'grad student']
|
216 |
+
|
217 |
+
# Use st.selectbox to let the user select a mode
|
218 |
+
self.selected_mode = st.selectbox("Select your education level:", modes)
|
219 |
+
|
220 |
+
# Display existing chat messages
|
221 |
+
# ... (code for displaying messages)
|
222 |
+
for message in st.session_state.messages:
|
223 |
+
if message["role"] == "assistant":
|
224 |
+
with st.chat_message("assistant"):
|
225 |
+
st.write(message["content"])
|
226 |
+
if message['image'] != None:
|
227 |
+
st.image(message['image'])
|
228 |
+
else:
|
229 |
+
with st.chat_message("user"):
|
230 |
+
st.write(message["content"])
|
231 |
+
|
232 |
+
# Wait for user input
|
233 |
+
if user_query := st.chat_input("What would you like to chat about?"):
|
234 |
+
# # ... (append user message to messages)
|
235 |
+
|
236 |
+
# ... (display user message)
|
237 |
+
with st.chat_message("user"):
|
238 |
+
st.write(user_query)
|
239 |
+
|
240 |
+
# Generate AI response
|
241 |
+
with st.chat_message("assistant"):
|
242 |
+
# ... (send request to OpenAI API)
|
243 |
+
response = ""
|
244 |
+
topic = None
|
245 |
+
image = None
|
246 |
+
hasImage = False
|
247 |
+
|
248 |
+
# Get the current conversation with new user query to check for users' intension
|
249 |
+
conversation = self.get_conversation()
|
250 |
+
user_query_plus_conversation = f"The current query is: {user_query}. The current conversation is: {conversation}"
|
251 |
+
classify_query = self.classify_agent.classify_query(user_query_plus_conversation)
|
252 |
+
|
253 |
+
if classify_query == general_greeting_num:
|
254 |
+
response = "How can I assist you today?"
|
255 |
+
elif classify_query == general_question_num:
|
256 |
+
response = "Please ask a question about Machine Learning or Python Code."
|
257 |
+
elif classify_query == machine_learning_num:
|
258 |
+
# answering agent will 1. call query agent te get matches from pinecone, 2. verify the matches r relevant, 3. generate response
|
259 |
+
response = self.process_query_response(user_query, 'ml')
|
260 |
+
|
261 |
+
# answering agent will generate an image
|
262 |
+
if not contains_sorry(response):
|
263 |
+
image = self.answering_agent.generate_image(response)
|
264 |
+
hasImage = True
|
265 |
+
topic = "ml"
|
266 |
+
|
267 |
+
elif classify_query == python_code_num:
|
268 |
+
response = self.process_query_response(user_query, 'python')
|
269 |
+
# answering agent will generate an image
|
270 |
+
if not contains_sorry(response):
|
271 |
+
image = self.answering_agent.generate_image(response)
|
272 |
+
hasImage = True
|
273 |
+
topic = "python"
|
274 |
+
|
275 |
+
elif classify_query == obnoxious_num:
|
276 |
+
response = "Please dont be obnoxious."
|
277 |
+
elif classify_query == default_num:
|
278 |
+
response = "I'm not sure how to respond to that."
|
279 |
+
else:
|
280 |
+
response = "I'm not sure how to respond to that."
|
281 |
+
|
282 |
+
# ... (get AI response and display it)
|
283 |
+
st.write(response)
|
284 |
+
if hasImage:
|
285 |
+
st.image(image)
|
286 |
+
|
287 |
+
# Test moving append user_query down here:
|
288 |
+
st.session_state.messages.append({"role": "user", "content": user_query, "topic": topic, "image": None})
|
289 |
+
# ... (append AI response to messages)
|
290 |
+
st.session_state.messages.append({"role": "assistant", "content": response, "topic": topic, "image": image})
|
291 |
+
|
292 |
+
if __name__ == "__main__":
|
293 |
+
head_agent = Head_Agent(OPENAI_KEY, pc_apikey)
|
294 |
+
head_agent.main_loop_1()
|