# import streamlit as st | |
# import transformers | |
# # Load the pre-trained language model | |
# model_name = "bert-base-uncased" | |
# model = transformers.pipeline("text-classification", model=model_name) | |
# # Streamlit App | |
# def main(): | |
# st.title("Sentence Category Classifier") | |
# # Input search sentence | |
# search_query = st.text_input("Enter a sentence:") | |
# result = "" | |
# # Process the search sentence when the user clicks the Search button | |
# if st.button("Search"): | |
# if search_query: | |
# # Classify the sentence using the pre-trained model | |
# categories = classify_sentence(search_query) | |
# # Display the categories as output | |
# if categories: | |
# result = f"The sentence belongs to the following categories:\n\n" | |
# for category in categories: | |
# result += f"• {category}\n" | |
# else: | |
# result = "No categories found for the sentence." | |
# # Display the result | |
# st.text(result) | |
# # Function to classify the sentence using the pre-trained language model | |
# @st.cache(allow_output_mutation=True) | |
# def classify_sentence(query): | |
# # Classify the sentence using the pre-trained model | |
# categories = model(query) | |
# # Extract the category labels from the model's output | |
# category_labels = [category['label'] for category in categories] | |
# return category_labels | |
# if __name__ == "__main__": | |
# main() | |
import streamlit as st | |
# Function to categorize input sentences | |
def categorize_sentence(sentence): | |
# Replace this function with your own logic to categorize sentences | |
categories = ['Restaurants', 'Food', 'Travel', 'New York City'] | |
return categories | |
# Configure Streamlit layout | |
st.set_page_config(page_title='Sentence Categorizer', layout='wide') | |
# Add title and description | |
st.title('Welcome to Sentence Categorizer') | |
st.write('Enter a sentence and discover relevant categories!') | |
# Create input box | |
sentence = st.text_input('Enter a sentence') | |
# Create button to trigger categorization | |
if st.button('Categorize'): | |
st.write('Categories:') | |
categories = categorize_sentence(sentence) | |
for category in categories: | |
st.success(category) |