|
import torch |
|
from flask import Flask, render_template, request, jsonify |
|
import os |
|
from transformers import pipeline |
|
from gtts import gTTS |
|
from pydub import AudioSegment |
|
from pydub.silence import detect_nonsilent |
|
from waitress import serve |
|
from simple_salesforce import Salesforce |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
asr_model = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if device == "cuda" else -1) |
|
|
|
|
|
def generate_audio_prompt(text, filename): |
|
tts = gTTS(text=text, lang="en") |
|
tts.save(os.path.join("static", filename)) |
|
|
|
|
|
prompts = { |
|
"welcome": "Welcome to Biryani Hub.", |
|
"ask_name": "Tell me your name.", |
|
"ask_email": "Please provide your email address.", |
|
"thank_you": "Thank you for registration." |
|
} |
|
|
|
for key, text in prompts.items(): |
|
generate_audio_prompt(text, f"{key}.mp3") |
|
|
|
|
|
SYMBOL_MAPPING = { |
|
"at the rate": "@", |
|
"at": "@", |
|
"dot": ".", |
|
"underscore": "_", |
|
"hash": "#", |
|
"plus": "+", |
|
"dash": "-", |
|
"comma": ",", |
|
"space": " " |
|
} |
|
|
|
|
|
def convert_to_wav(input_path, output_path): |
|
try: |
|
audio = AudioSegment.from_file(input_path) |
|
audio = audio.set_frame_rate(16000).set_channels(1) |
|
audio.export(output_path, format="wav") |
|
except Exception as e: |
|
raise Exception(f"Audio conversion failed: {str(e)}") |
|
|
|
|
|
def is_silent_audio(audio_path): |
|
audio = AudioSegment.from_wav(audio_path) |
|
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) |
|
return len(nonsilent_parts) == 0 |
|
|
|
|
|
sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q') |
|
|
|
|
|
def create_salesforce_record(name, email, phone_number): |
|
try: |
|
customer_login = sf.Customer_Login__c.create({ |
|
'Name': name, |
|
'Email__c': email, |
|
'Phone_Number__c': phone_number |
|
}) |
|
return customer_login |
|
except Exception as e: |
|
return {"error": f"Failed to create record in Salesforce: {str(e)}"} |
|
|
|
@app.route("/") |
|
def index(): |
|
return render_template("index.html") |
|
|
|
@app.route("/transcribe", methods=["POST"]) |
|
def transcribe(): |
|
if "audio" not in request.files: |
|
return jsonify({"error": "No audio file provided"}), 400 |
|
|
|
audio_file = request.files["audio"] |
|
input_audio_path = os.path.join("static", "temp_input.wav") |
|
output_audio_path = os.path.join("static", "temp.wav") |
|
audio_file.save(input_audio_path) |
|
|
|
try: |
|
|
|
convert_to_wav(input_audio_path, output_audio_path) |
|
|
|
|
|
if is_silent_audio(output_audio_path): |
|
return jsonify({"error": "No speech detected. Please try again."}), 400 |
|
|
|
|
|
result = asr_model(output_audio_path, generate_kwargs={"language": "en"}) |
|
transcribed_text = result["text"].strip().capitalize() |
|
|
|
|
|
parts = transcribed_text.split() |
|
name = parts[0] |
|
email = parts[1] if '@' in parts[1] else "[email protected]" |
|
phone_number = parts[2] if len(parts) > 2 else "0000000000" |
|
|
|
|
|
salesforce_response = create_salesforce_record(name, email, phone_number) |
|
|
|
if "error" in salesforce_response: |
|
return jsonify(salesforce_response), 500 |
|
|
|
return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) |
|
|
|
except Exception as e: |
|
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 |
|
|
|
|
|
if __name__ == "__main__": |
|
serve(app, host="0.0.0.0", port=7860) |
|
|