File size: 6,518 Bytes
01780bf
9b40d8d
01780bf
 
a1cfef6
 
 
 
fe14dd8
01780bf
a1cfef6
6ddba4d
fe14dd8
2fab7d3
2fdeb17
 
2fab7d3
fe14dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480da8
 
9b40d8d
fe14dd8
3480da8
fe14dd8
5ef3837
2fdeb17
 
 
 
 
 
 
 
 
 
fe14dd8
2fdeb17
 
 
 
 
9b40d8d
 
2fdeb17
9b40d8d
 
 
a4315ce
9b40d8d
 
c32f608
c1d8f2a
9b40d8d
 
 
 
c1d8f2a
9b40d8d
c1d8f2a
9b40d8d
c1d8f2a
2fdeb17
9b40d8d
 
1aa8118
9b40d8d
 
 
 
 
 
efa0646
c1d8f2a
9b40d8d
 
 
 
 
2fdeb17
c1d8f2a
9b40d8d
 
fe14dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fdeb17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fab7d3
2fdeb17
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from flask import Flask, render_template, request, jsonify
import json
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig  # Import AutoConfig for the config object
import time
from waitress import serve
from simple_salesforce import Salesforce
import requests  # Import requests for exception handling

app = Flask(__name__, template_folder="templates")
app.secret_key = os.urandom(24)

# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"

# Create config object to set timeout and other parameters
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})  # Set timeout to 60 seconds

# Function to generate audio prompts
def generate_audio_prompt(text, filename):
    try:
        tts = gTTS(text)
        tts.save(os.path.join("static", filename))
    except Exception as e:
        print(f"Error: {e}")
        time.sleep(5)  # Wait before retrying
        generate_audio_prompt(text, filename)

# Generate required voice prompts
prompts = {
    "welcome": "Welcome to Biryani Hub.",
    "ask_name": "Tell me your name.",
    "ask_email": "Please provide your email address.",
    "thank_you": "Thank you for registration."
}

for key, text in prompts.items():
    generate_audio_prompt(text, f"{key}.mp3")

# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
    try:
        audio = AudioSegment.from_file(input_path)
        audio = audio.set_frame_rate(16000).set_channels(1)  # Convert to 16kHz, mono
        audio.export(output_path, format="wav")
    except Exception as e:
        raise Exception(f"Audio conversion failed: {str(e)}")

# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
    return len(nonsilent_parts) == 0

# Salesforce connection details
try:
    print("Attempting to connect to Salesforce...")
    sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
    print("Connected to Salesforce successfully!")
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")

# βœ… HOME ROUTE (Loads `index.html`)
@app.route("/", methods=["GET"])
def index():
    return render_template("index.html")

# βœ… DASHBOARD ROUTE
@app.route("/dashboard", methods=["GET"])
def dashboard():
    return render_template("dashboard.html")

# βœ… MENU PAGE ROUTE
@app.route("/menu_page", methods=["GET"])
def menu_page():
    return render_template("menu_page.html")

# βœ… LOGIN API
@app.route('/login', methods=['POST'])
def login():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    phone_number = data.get('phone_number')

    if not name or not email or not phone_number:
        return jsonify({'error': 'Missing required fields'}), 400

    try:
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone_number
        })
        return jsonify({'success': True, 'id': customer_login['id']}), 200
    except Exception as e:
        return jsonify({'error': f'Failed to create record in Salesforce: {str(e)}'}), 500

# βœ… REGISTER API
@app.route("/submit", methods=["POST"])
def submit():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    phone = data.get('phone')

    if not name or not email or not phone:
        return jsonify({'error': 'Missing data'}), 400

    try:
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone
        })
        return jsonify({'success': True}), 200
    except Exception as e:
        return jsonify({'error': str(e)}), 500

# βœ… TRANSCRIBE AUDIO API
@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        convert_to_wav(input_audio_path, output_audio_path)
        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400

        asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
        result = asr_pipeline(output_audio_path)

        transcribed_text = result["text"].strip().capitalize()

        parts = transcribed_text.split()
        name = parts[0] if len(parts) > 0 else "Unknown Name"
        email = parts[1] if '@' in parts[1] else "[email protected]"
        phone_number = parts[2] if len(parts) > 2 else "0000000000"

        confirmation = f"Is this correct? Name: {name}, Email: {email}, Phone: {phone_number}"
        generate_audio_prompt(confirmation, "confirmation.mp3")

        salesforce_response = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone_number
        })

        return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})

    except Exception as e:
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

# βœ… MENU API
@app.route("/menu", methods=["GET"])
def get_menu():
    try:
        query = "SELECT Name, Price__c, Ingredients__c, Category__c FROM Menu_Item__c"
        result = sf.query(query)

        menu_items = []
        for item in result["records"]:
            menu_items.append({
                "name": item["Name"],
                "price": item["Price__c"],
                "ingredients": item["Ingredients__c"],
                "category": item["Category__c"]
            })

        return jsonify({"success": True, "menu": menu_items})
    except Exception as e:
        return jsonify({"error": f"Failed to fetch menu: {str(e)}"}), 500

# βœ… START PRODUCTION SERVER
if __name__ == "__main__":
    print("βœ… Starting Flask API Server on port 7860...")
    serve(app, host="0.0.0.0", port=7860)