File size: 10,240 Bytes
22bea9a cd94e4f 66083bc 95585ab 66083bc 2fab7d3 5127047 95585ab 2fab7d3 95585ab 5127047 2fab7d3 5127047 95585ab 22bea9a 5127047 95585ab 5127047 22bea9a 5127047 66083bc 5127047 66083bc 5127047 66083bc 5127047 66083bc 09fc0b8 cd94e4f 696d0f0 5127047 66083bc 5127047 66083bc 5127047 66083bc 5127047 2fab7d3 5127047 cd94e4f 2fab7d3 5127047 1a545f7 95585ab 4a27f85 95585ab 2fab7d3 4a27f85 2fab7d3 95585ab 5127047 66083bc 5127047 66083bc 4a27f85 66083bc 5127047 cd94e4f 5127047 8eee015 5127047 8eee015 5127047 8eee015 5127047 8eee015 5127047 2fab7d3 8eee015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import torch
from flask import Flask, render_template, request, jsonify, redirect
import json
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig # Import AutoConfig for the config object
import time
from waitress import serve
from simple_salesforce import Salesforce
import requests # Import requests for exception handling
app = Flask(__name__)
# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"
# Create config object to set timeout and other parameters
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60}) # Set timeout to 60 seconds
# Your function where you generate and save the audio
def generate_audio_prompt(text, filename):
try:
tts = gTTS(text)
tts.save(os.path.join("static", filename))
except gtts.tts.gTTSError as e:
print(f"Error: {e}")
print("Retrying after 5 seconds...")
time.sleep(5) # Wait for 5 seconds before retrying
generate_audio_prompt(text, filename)
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono
audio.export(output_path, format="wav")
except Exception as e:
print(f"Error: {str(e)}")
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration
print(f"Detected nonsilent parts: {nonsilent_parts}")
return len(nonsilent_parts) == 0 # If no speech detected
# Salesforce connection details
try:
print("Attempting to connect to Salesforce...")
sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
print("Connected to Salesforce successfully!")
print("User Info:", sf.UserInfo) # Log the user info to verify the connection
except Exception as e:
print(f"Failed to connect to Salesforce: {str(e)}")
# Function to fetch menu items from Salesforce
def get_menu_items():
query = "SELECT Name, Price__c, Ingredients__c, Category__c FROM Menu_Item__c"
result = sf.query(query)
return result['records']
@app.route("/")
def index():
return render_template("index.html")
# Function to create Salesforce record
# API endpoint to receive data from voice bot
@app.route('/login', methods=['POST'])
def login():
# Get data from voice bot (name, email, phone number)
data = request.json # Assuming voice bot sends JSON data
name = data.get('name')
email = data.get('email')
phone_number = data.get('phone_number')
if not name or not email or not phone_number:
return jsonify({'error': 'Missing required fields'}), 400
# Create a record in Salesforce
try:
customer_login = sf.Customer_Login__c.create({
'Name': name,
'Email__c': email,
'Phone_Number__c': phone_number
})
return jsonify({'success': True, 'id': customer_login['id']}), 200
return redirect("/menu") # Redirect to the menu page after successful login
except Exception as e:
return jsonify({'error': f'Failed to create record in Salesforce: {str(e)}'}), 500
@app.route("/submit", methods=["POST"])
def submit():
data = request.json
name = data.get('name')
email = data.get('email')
phone = data.get('phone')
if not name or not email or not phone:
return jsonify({'error': 'Missing data'}), 400
try:
# Create Salesforce record
customer_login = sf.Customer_Login__c.create({
'Name': name,
'Email__c': email,
'Phone_Number__c': phone
})
if customer_login.get('id'):
return jsonify({'success': True})
else:
return jsonify({'error': 'Failed to create record'}), 500
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route("/menu", methods=["GET"])
def menu_page():
menu_items = get_menu_items() # Fetch menu items from Salesforce
menu_data = []
for item in menu_items:
menu_data.append({
"name": item['Name'],
"price": item['Price__c'],
"ingredients": item['Ingredients__c'],
"category": item['Category__c'],
})
# Render the menu page template and pass the menu data to it
return render_template("menu_page.html", menu_items=menu_data)
# Route for handling order (you'll save the order to Salesforce here)
@app.route("/order", methods=["POST"])
def place_order():
# Getting the item name from the POST request (you can customize this to get more data)
item_name = request.json.get('item_name')
quantity = request.json.get('quantity')
# Logic to save the order details to Salesforce
order_data = {
"Item__c": item_name, # Assuming 'Item__c' is the field in your Order object
"Quantity__c": quantity, # Assuming 'Quantity__c' is a field for the quantity
# Add any other fields you need to capture, like customer, price, etc.
}
# Create the order record in Salesforce
sf.Order__c.create(order_data)
# Return a success response
return jsonify({"success": True, "message": f"Order for {item_name} placed successfully."})
# Route to handle the cart (this can be expanded later)
@app.route("/cart", methods=["GET"])
def cart():
# Logic to fetch cart items (this could be from a session or database)
cart_items = [] # Placeholder for cart items
return render_template("cart_page.html", cart_items=cart_items)
# Route for the order summary page (this can be expanded later)
@app.route("/order-summary", methods=["GET"])
def order_summary():
# Logic to fetch order summary (this could be from a session or database)
order_details = [] # Placeholder for order details
return render_template("order_summary.html", order_details=order_details)
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
print("No audio file provided")
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input.wav")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert to WAV
convert_to_wav(input_audio_path, output_audio_path)
# Check for silence
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
else:
print("Audio contains speech, proceeding with transcription.")
# Use Whisper ASR model for transcription
result = None
retry_attempts = 3
for attempt in range(retry_attempts):
try:
result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
print(f"Transcribed text: {result['text']}")
break
except requests.exceptions.ReadTimeout:
print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...")
time.sleep(5)
if result is None:
return jsonify({"error": "Unable to transcribe audio after retries."}), 500
transcribed_text = result["text"].strip().capitalize()
print(f"Transcribed text: {transcribed_text}")
# Extract name, email, and phone number from the transcribed text
parts = transcribed_text.split()
name = parts[0] if len(parts) > 0 else "Unknown Name"
email = parts[1] if '@' in parts[1] else "[email protected]"
phone_number = parts[2] if len(parts) > 2 else "0000000000"
print(f"Parsed data - Name: {name}, Email: {email}, Phone Number: {phone_number}")
# Confirm details before submission
confirmation = f"Is this correct? Name: {name}, Email: {email}, Phone: {phone_number}"
generate_audio_prompt(confirmation, "confirmation.mp3")
# Simulate confirmation via user action, in real case this should be handled via front-end
user_confirms = True # Assuming the user confirms, you can replace this with actual user input logic
if user_confirms:
# Create record in Salesforce
salesforce_response = create_salesforce_record(name, email, phone_number)
# Log the Salesforce response
print(f"Salesforce record creation response: {salesforce_response}")
# Check if the response contains an error
if "error" in salesforce_response:
print(f"Error creating record in Salesforce: {salesforce_response['error']}")
return jsonify(salesforce_response), 500
# If creation was successful, return the details
return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})
except Exception as e:
print(f"Error in transcribing or processing: {str(e)}")
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Start Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)
|