File size: 8,753 Bytes
a1cfef6
 
 
6ddba4d
a1cfef6
 
 
 
 
 
 
6ddba4d
a1cfef6
2fab7d3
a1cfef6
2fab7d3
a1cfef6
2fab7d3
a1cfef6
 
6ddba4d
a1cfef6
 
 
 
 
6ddba4d
 
 
 
a1cfef6
6ddba4d
 
 
a1cfef6
 
e21d37e
 
 
 
a1cfef6
e21d37e
 
 
a1cfef6
4e9c3dd
a1cfef6
 
 
 
e21d37e
a1cfef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9c3dd
a1cfef6
 
 
 
 
696d0f0
a1cfef6
 
 
 
4e9c3dd
a1cfef6
 
 
00af749
a1cfef6
66083bc
a1cfef6
 
 
 
 
66083bc
a1cfef6
66083bc
 
2fab7d3
a1cfef6
 
 
25311cb
a1cfef6
 
 
 
 
 
 
4e9c3dd
cd94e4f
 
a1cfef6
 
 
4e9c3dd
cd94e4f
 
a1cfef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5127047
a1cfef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e9c3dd
a1cfef6
2fab7d3
a1cfef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
from flask import Flask, render_template, request, jsonify, redirect, session
import json
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig
import time
from waitress import serve
from simple_salesforce import Salesforce
import requests

# Initialize Flask app
app = Flask(__name__)
app.secret_key = os.urandom(24)  # For session handling

# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"

# Create config object to set timeout and other parameters
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})  # Set timeout to 60 seconds

# Salesforce connection details
try:
    print("Attempting to connect to Salesforce...")
    sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
    print("Connected to Salesforce successfully!")
    print("User Info:", sf.UserInfo)  # Log the user info to verify the connection
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")

# Functions for Salesforce operations
def create_salesforce_record(sf, name, email, phone_number):
    try:
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone_number
        })
        return customer_login
    except Exception as e:
        raise Exception(f"Failed to create record: {str(e)}")

def get_menu_items(sf):
    query = "SELECT Name, Price__c, Ingredients__c, Category__c FROM Menu_Item__c"
    result = sf.query(query)
    return result['records']

# Voice-related functions
def generate_audio_prompt(text, filename):
    try:
        tts = gTTS(text)
        tts.save(os.path.join("static", filename))
    except gtts.tts.gTTSError as e:
        print(f"Error: {e}")
        print("Retrying after 5 seconds...")
        time.sleep(5)  # Wait for 5 seconds before retrying
        generate_audio_prompt(text, filename)

# Utility functions
def convert_to_wav(input_path, output_path):
    try:
        audio = AudioSegment.from_file(input_path)
        audio = audio.set_frame_rate(16000).set_channels(1)  # Convert to 16kHz, mono
        audio.export(output_path, format="wav")
    except Exception as e:
        print(f"Error: {str(e)}")
        raise Exception(f"Audio conversion failed: {str(e)}")

def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)  # Reduced silence duration
    print(f"Detected nonsilent parts: {nonsilent_parts}")
    return len(nonsilent_parts) == 0  # If no speech detected

# Routes and Views
@app.route("/")
def index():
    return render_template("index.html")

@app.route("/dashboard", methods=["GET"])
def dashboard():
    return render_template("dashboard.html")  # Render the dashboard template

@app.route('/login', methods=['POST'])
def login():
    # Get data from voice bot (name, email, phone number)
    data = request.json  # Assuming voice bot sends JSON data
    name = data.get('name')
    email = data.get('email')
    phone_number = data.get('phone_number')

    if not name or not email or not phone_number:
        return jsonify({'error': 'Missing required fields'}), 400

    try:
        customer_login = create_salesforce_record(sf, name, email, phone_number)
        session['customer_id'] = customer_login['id']  # Store customer ID in session
        return redirect("/menu")  # Redirect to the menu page after successful login
    except Exception as e:
        return jsonify({'error': f'Failed to create record in Salesforce: {str(e)}'}), 500

@app.route("/menu", methods=["GET"])
def menu_page():
    menu_items = get_menu_items(sf)  # Fetch menu items from Salesforce
    menu_data = [{"name": item['Name'], "price": item['Price__c'], "ingredients": item['Ingredients__c'], "category": item['Category__c']} for item in menu_items]
    return render_template("menu_page.html", menu_items=menu_data)

@app.route("/cart", methods=["GET"])
def cart():
    # Retrieve cart items from session
    cart_items = session.get('cart_items', [])
    return render_template("cart_page.html", cart_items=cart_items)

@app.route("/order-summary", methods=["GET"])
def order_summary():
    # Retrieve order details from session
    order_details = session.get('cart_items', [])
    total_price = sum(item['price'] * item['quantity'] for item in order_details)
    return render_template("order_summary.html", order_details=order_details, total_price=total_price)

@app.route("/final_order", methods=["GET"])
def final_order():
    # Clear cart items from the session after confirming the order
    session.pop('cart_items', None)
    return render_template("final_order.html")

@app.route("/add_to_cart", methods=["POST"])
def add_to_cart():
    item_name = request.json.get('item_name')
    quantity = request.json.get('quantity')
    
    # Retrieve the current cart items from session or initialize an empty list
    cart_items = session.get('cart_items', [])
    cart_items.append({"name": item_name, "quantity": quantity, "price": 10})  # Assuming a fixed price for now
    session['cart_items'] = cart_items  # Save the updated cart items in session
    
    return jsonify({"success": True, "message": f"Added {item_name} to cart."})

@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        print("No audio file provided")
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        # Convert to WAV
        convert_to_wav(input_audio_path, output_audio_path)

        # Check for silence
        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400
        else:
            print("Audio contains speech, proceeding with transcription.")

        # Use Whisper ASR model for transcription
        result = None
        retry_attempts = 3
        for attempt in range(retry_attempts):
            try:
                result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
                print(f"Transcribed text: {result['text']}")
                break
            except requests.exceptions.ReadTimeout:
                print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...")
                time.sleep(5)

        if result is None:
            return jsonify({"error": "Unable to transcribe audio after retries."}), 500

        transcribed_text = result["text"].strip().capitalize()
        print(f"Transcribed text: {transcribed_text}")

        # Extract name, email, and phone number from the transcribed text
        parts = transcribed_text.split()
        name = parts[0] if len(parts) > 0 else "Unknown Name"
        email = parts[1] if '@' in parts[1] else "[email protected]"
        phone_number = parts[2] if len(parts) > 2 else "0000000000"
        print(f"Parsed data - Name: {name}, Email: {email}, Phone Number: {phone_number}")

        # Confirm details before submission
        confirmation = f"Is this correct? Name: {name}, Email: {email}, Phone: {phone_number}"
        generate_audio_prompt(confirmation, "confirmation.mp3")

        # Simulate confirmation via user action
        user_confirms = True  # Assuming the user confirms, you can replace this with actual user input logic

        if user_confirms:
            # Create record in Salesforce
            salesforce_response = create_salesforce_record(name, email, phone_number)

            # Log the Salesforce response
            print(f"Salesforce record creation response: {salesforce_response}")

            # Check if the response contains an error
            if "error" in salesforce_response:
                print(f"Error creating record in Salesforce: {salesforce_response['error']}")
                return jsonify(salesforce_response), 500

            return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})

    except Exception as e:
        print(f"Error in transcribing or processing: {str(e)}")
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

# Start Production Server
if __name__ == "__main__":
    serve(app, host="0.0.0.0", port=7860)