Spaces:
Sleeping
Sleeping
File size: 7,599 Bytes
f2dc0dc 027fc0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import torch from flask import Flask, render_template, request, jsonify import json import os from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from transformers import AutoConfig # Import AutoConfig for the config object import time from waitress import serve from simple_salesforce import Salesforce import requests # Import requests for exception handling app = Flask(__name__) # Use whisper-small for faster processing and better speed device = "cuda" if torch.cuda.is_available() else "cpu" # Create config object to set timeout and other parameters config = AutoConfig.from_pretrained("openai/whisper-small") config.update({"timeout": 60}) # Set timeout to 60 seconds # Your function where you generate and save the audio def generate_audio_prompt(text, filename): try: tts = gTTS(text) tts.save(os.path.join("static", filename)) except gtts.tts.gTTSError as e: print(f"Error: {e}") print("Retrying after 5 seconds...") time.sleep(5) # Wait for 5 seconds before retrying generate_audio_prompt(text, filename) # Generate required voice prompts prompts = { "welcome": "Welcome to Biryani Hub.", "ask_name": "Tell me your name.", "ask_email": "Please provide your email address.", "thank_you": "Thank you for registration." } for key, text in prompts.items(): generate_audio_prompt(text, f"{key}.mp3") # Symbol mapping for proper recognition SYMBOL_MAPPING = { "at the rate": "@", "at": "@", "dot": ".", "underscore": "_", "hash": "#", "plus": "+", "dash": "-", "comma": ",", "space": " " } # Function to convert audio to WAV format def convert_to_wav(input_path, output_path): try: audio = AudioSegment.from_file(input_path) audio = audio.set_frame_rate(16000).set_channels(1) # Convert to 16kHz, mono audio.export(output_path, format="wav") except Exception as e: print(f"Error: {str(e)}") raise Exception(f"Audio conversion failed: {str(e)}") # Function to check if audio contains actual speech def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) # Reduced silence duration print(f"Detected nonsilent parts: {nonsilent_parts}") return len(nonsilent_parts) == 0 # If no speech detected # Salesforce connection details try: print("Attempting to connect to Salesforce...") sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q') print("Connected to Salesforce successfully!") print("User Info:", sf.UserInfo) # Log the user info to verify the connection except Exception as e: print(f"Failed to connect to Salesforce: {str(e)}") # Function to create Salesforce record # API endpoint to receive data from voice bot @app.route('/login', methods=['POST']) def login(): # Get data from voice bot (name, email, phone number) data = request.json # Assuming voice bot sends JSON data name = data.get('name') email = data.get('email') phone_number = data.get('phone_number') if not name or not email or not phone_number: return jsonify({'error': 'Missing required fields'}), 400 # Create a record in Salesforce try: customer_login = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone_number }) return jsonify({'success': True, 'id': customer_login['id']}), 200 except Exception as e: print(f"Error creating Salesforce record: {str(e)}") return jsonify({'error': f'Failed to create record in Salesforce: {str(e)}'}), 500 @app.route("/submit", methods=["POST"]) def submit(): data = request.json name = data.get('name') email = data.get('email') phone = data.get('phone') if not name or not email or not phone: return jsonify({'error': 'Missing data'}), 400 try: # Create Salesforce record customer_login = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone }) if customer_login.get('id'): return jsonify({'success': True, 'id': customer_login['id']}) else: return jsonify({'error': 'Failed to create record'}), 500 except Exception as e: print(f"Error during Salesforce record creation: {str(e)}") return jsonify({'error': str(e)}), 500 @app.route("/") def index(): return render_template("index.html") @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: print("No audio file provided") return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: # Convert to WAV convert_to_wav(input_audio_path, output_audio_path) # Check for silence if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 else: print("Audio contains speech, proceeding with transcription.") # Use Whisper ASR model for transcription result = None retry_attempts = 3 for attempt in range(retry_attempts): try: result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config) print(f"Transcribed text: {result['text']}") break except requests.exceptions.ReadTimeout: print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...") time.sleep(5) if result is None: return jsonify({"error": "Unable to transcribe audio after retries."}), 500 transcribed_text = result["text"].strip().capitalize() print(f"Transcribed text: {transcribed_text}") # Extract name, email, and phone number from the transcribed text parts = transcribed_text.split() name = parts[0] if len(parts) > 0 else "Unknown Name" email = parts[1] if '@' in parts[1] else "[email protected]" phone_number = parts[2] if len(parts) > 2 else "0000000000" print(f"Parsed data - Name: {name}, Email: {email}, Phone Number: {phone_number}") # Create record in Salesforce salesforce_response = create_salesforce_record(name, email, phone_number) # Log the Salesforce response print(f"Salesforce record creation response: {salesforce_response}") # Check if the response contains an error if "error" in salesforce_response: print(f"Error creating record in Salesforce: {salesforce_response['error']}") return jsonify(salesforce_response), 500 # If creation was successful, return the details return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) except Exception as e: print(f"Error in transcribing or processing: {str(e)}") return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 # Start Production Server if __name__ == "__main__": serve(app, host="0.0.0.0", port=7860) |