import os import time import torch from flask import Flask, render_template, request, jsonify from simple_salesforce import Salesforce from transformers import pipeline from gtts import gTTS from pydub import AudioSegment from pydub.silence import detect_nonsilent from transformers import AutoConfig # Import AutoConfig for the config object from waitress import serve # Flask setup app = Flask(__name__, template_folder="templates") app.secret_key = os.urandom(24) # Check for available GPU device = "cuda" if torch.cuda.is_available() else "cpu" # Set up Whisper model config config = AutoConfig.from_pretrained("openai/whisper-small") config.update({"timeout": 60}) # Set timeout to 60 seconds # Salesforce connection try: print("Attempting to connect to Salesforce...") sf = Salesforce(username='your_username', password='your_password', security_token='your_security_token') print("Connected to Salesforce successfully!") except Exception as e: print(f"Failed to connect to Salesforce: {str(e)}") # Function to generate audio prompt using gTTS def generate_audio_prompt(text, filename): try: tts = gTTS(text) tts.save(os.path.join("static", filename)) except Exception as e: print(f"Error generating audio prompt: {e}") time.sleep(5) generate_audio_prompt(text, filename) # Example prompts for voice interaction prompts = { "welcome": "Welcome to Biryani Hub.", "ask_name": "Tell me your name.", "ask_email": "Please provide your email address.", "thank_you": "Thank you for registration." } # Generate audio prompts for key, text in prompts.items(): generate_audio_prompt(text, f"{key}.mp3") # Function to check if the audio is silent def is_silent_audio(audio_path): audio = AudioSegment.from_wav(audio_path) nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16) return len(nonsilent_parts) == 0 # Function to fetch menu items from Salesforce def get_menu_items(): try: # Salesforce query to fetch all menu items query = """ SELECT Name, Price__c, Ingredients__c, Category__c FROM Menu_Item__c """ result = sf.query(query) menu_items = [] for item in result["records"]: menu_items.append({ "name": item["Name"], "price": item["Price__c"], "ingredients": item["Ingredients__c"], "category": item["Category__c"] }) return menu_items except Exception as e: print(f"Error fetching menu items: {str(e)}") return [] # Function to check if the customer exists in Salesforce (login check) def get_customer_login(name, email, phone_number): try: # Salesforce query to fetch customer based on Name, Email, and Phone Number query = f""" SELECT Id, Name, Email__c, Phone_Number__c FROM Customer_Login__c WHERE Name = '{name}' AND Email__c = '{email}' AND Phone_Number__c = '{phone_number}' """ result = sf.query(query) if result["records"]: customer = result["records"][0] return { "id": customer["Id"], "name": customer["Name"], "email": customer["Email__c"], "phone": customer["Phone_Number__c"] } else: return None except Exception as e: print(f"Error fetching customer login details: {str(e)}") return None # Function to create a new customer login in Salesforce def create_customer_login(name, email, phone): try: # Create a new customer login record in Salesforce customer_login = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone }) return customer_login except Exception as e: print(f"Error creating customer login: {str(e)}") return None # Home Route (loads index.html) @app.route("/", methods=["GET"]) def index(): return render_template("index.html") # Dashboard Route @app.route("/dashboard", methods=["GET"]) def dashboard(): return render_template("dashboard.html") # Menu Page Route @app.route("/menu_page", methods=["GET"]) def menu_page(): menu_items = get_menu_items() return render_template("menu_page.html", menu=menu_items) # Login API @app.route('/login', methods=['POST']) def login(): data = request.json name = data.get('name') email = data.get('email') phone_number = data.get('phone_number') if not name or not email or not phone_number: return jsonify({'error': 'Missing required fields'}), 400 # Check if the customer exists in Salesforce customer = get_customer_login(name, email, phone_number) if customer: return jsonify({'success': True, 'customer': customer}), 200 else: return jsonify({'error': 'Customer not found'}), 404 # Register API (Create customer login) @app.route("/submit", methods=["POST"]) def submit(): data = request.json name = data.get('name') email = data.get('email') phone = data.get('phone') if not name or not email or not phone: return jsonify({'error': 'Missing data'}), 400 # Create customer login record in Salesforce customer_login = create_customer_login(name, email, phone) if customer_login: return jsonify({'success': True}), 200 else: return jsonify({'error': 'Failed to create customer record'}), 500 # Transcribe Audio API @app.route("/transcribe", methods=["POST"]) def transcribe(): if "audio" not in request.files: return jsonify({"error": "No audio file provided"}), 400 audio_file = request.files["audio"] input_audio_path = os.path.join("static", "temp_input.wav") output_audio_path = os.path.join("static", "temp.wav") audio_file.save(input_audio_path) try: # Convert the audio to WAV format and check if it contains speech convert_to_wav(input_audio_path, output_audio_path) if is_silent_audio(output_audio_path): return jsonify({"error": "No speech detected. Please try again."}), 400 # Transcribe the audio using Whisper model asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config) result = asr_pipeline(output_audio_path) transcribed_text = result["text"].strip().capitalize() # Extract details from transcribed text (Assumed format: Name Email Phone) parts = transcribed_text.split() name = parts[0] if len(parts) > 0 else "Unknown Name" email = parts[1] if '@' in parts[1] else "unknown@domain.com" phone_number = parts[2] if len(parts) > 2 else "0000000000" confirmation = f"Is this correct? Name: {name}, Email: {email}, Phone: {phone_number}" generate_audio_prompt(confirmation, "confirmation.mp3") # Create a customer login record salesforce_response = sf.Customer_Login__c.create({ 'Name': name, 'Email__c': email, 'Phone_Number__c': phone_number }) return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response}) except Exception as e: return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500 # Start the Flask server if __name__ == "__main__": print("Starting Flask API Server on port 7860...") serve(app, host="0.0.0.0", port=7860)