voicemenu143 / app.py
lokesh341's picture
Update app.py
784c9d5 verified
raw
history blame
6.41 kB
import torch
from flask import Flask, render_template, request, jsonify
import json
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig
import time
from waitress import serve
from simple_salesforce import Salesforce
import requests
app = Flask(__name__)
# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"
# Create config object to set timeout and other parameters
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})
# Generate required voice prompts
prompts = {
"welcome": "Welcome to Biryani Hub.",
"ask_name": "Tell me your name.",
"ask_email": "Please provide your email address.",
"thank_you": "Thank you for registration."
}
# Function to generate and save audio prompts
def generate_audio_prompt(text, filename):
try:
tts = gTTS(text)
tts.save(os.path.join("static", filename))
except gtts.tts.gTTSError as e:
print(f"Error: {e}")
print("Retrying after 5 seconds...")
time.sleep(5)
generate_audio_prompt(text, filename)
for key, text in prompts.items():
generate_audio_prompt(text, f"{key}.mp3")
# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
"at the rate": "@",
"at": "@",
"dot": ".",
"underscore": "_",
"hash": "#",
"plus": "+",
"dash": "-",
"comma": ",",
"space": " "
}
# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
try:
audio = AudioSegment.from_file(input_path)
audio = audio.set_frame_rate(16000).set_channels(1)
audio.export(output_path, format="wav")
except Exception as e:
raise Exception(f"Audio conversion failed: {str(e)}")
# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
audio = AudioSegment.from_wav(audio_path)
nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
return len(nonsilent_parts) == 0
# Salesforce connection details
try:
print("Attempting to connect to Salesforce...")
sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
print("Connected to Salesforce successfully!")
except Exception as e:
print(f"Failed to connect to Salesforce: {str(e)}")
# Function to handle login & registration in Salesforce
@app.route("/validate_login", methods=["POST"])
def validate_login():
try:
# Get the email and mobile number from the request
data = request.json
email = data.get("email")
mobile = data.get("mobile")
# Salesforce query to check if the email and mobile exist
query = f"SELECT Id, Name FROM Customer_Login__c WHERE Email__c = '{email}' AND Phone_Number__c = '{mobile}'"
result = sf.query(query)
if result['totalSize'] > 0:
return jsonify({'success': True, 'message': 'User authenticated successfully.'}), 200
else:
return jsonify({'success': False, 'error': 'Invalid email or mobile number.'}), 400
except Exception as e:
logging.error(f"Error: {str(e)}")
return jsonify({'error': 'Something went wrong. Please try again later.'}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)
# Initialize Flask app
app = Flask(__name__)
# Set the secret key to handle sessions securely
app.secret_key = os.getenv("SECRET_KEY", "sSSjyhInIsUohKpG8sHzty2q") # Replace with a secure key
# Configure the session type
app.config["SESSION_TYPE"] = "filesystem" # Use filesystem for session storage
app.config["SESSION_COOKIE_NAME"] = "my_session" # Optional: Change session cookie name
app.config["SESSION_COOKIE_SECURE"] = True # Ensure cookies are sent over HTTPS
app.config["SESSION_COOKIE_SAMESITE"] = "None" # Allow cross-site cookies
# Initialize the session
Session(app)
# Set up logging
logging.basicConfig(level=logging.INFO)
@app.route("/")
def index():
# Serve the HTML page for the voice-based login
return render_template("index.html")
@app.route("/capture_email_and_mobile", methods=["POST"])
def capture_email_and_mobile():
try:
# Get the voice captured email and mobile number from the request
data = request.json
email = data.get("email")
mobile = data.get("mobile")
# Validate the captured email and mobile number
if not email or not mobile:
return jsonify({"error": "Email or mobile number is missing."}), 400
# Log the captured data for now (you can replace it with actual processing logic)
logging.info(f"Captured Email: {email}, Mobile: {mobile}")
# For simplicity, we'll assume the capture was successful.
return jsonify({"success": True, "message": "Email and mobile captured successfully."}), 200
except Exception as e:
logging.error(f"Error: {str(e)}")
return jsonify({"error": "Something went wrong while processing."}), 500
@app.route("/")
def index():
return render_template("index.html")
@app.route("/transcribe", methods=["POST"])
def transcribe():
if "audio" not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files["audio"]
input_audio_path = os.path.join("static", "temp_input.wav")
output_audio_path = os.path.join("static", "temp.wav")
audio_file.save(input_audio_path)
try:
# Convert to WAV
convert_to_wav(input_audio_path, output_audio_path)
# Check for silence
if is_silent_audio(output_audio_path):
return jsonify({"error": "No speech detected. Please try again."}), 400
# Use Whisper ASR model for transcription
result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
transcribed_text = result(output_audio_path)["text"].strip().capitalize()
return jsonify({"text": transcribed_text})
except Exception as e:
return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500
# Start Production Server
if __name__ == "__main__":
serve(app, host="0.0.0.0", port=7860)