File size: 7,659 Bytes
5758799
 
01780bf
9b40d8d
5758799
a1cfef6
 
 
 
3e74d12
a1cfef6
2fab7d3
5758799
2fdeb17
 
2fab7d3
5758799
3e74d12
 
5758799
3e74d12
 
 
5758799
 
 
 
 
 
 
 
 
3e74d12
 
 
 
 
5758799
 
3e74d12
 
5758799
3e74d12
 
 
 
 
 
 
5758799
3e74d12
 
 
5758799
3e74d12
 
 
 
 
5758799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef3837
5758799
2fdeb17
 
 
 
5758799
2fdeb17
 
 
 
5758799
2fdeb17
 
5758799
 
2fdeb17
5758799
9b40d8d
 
2fdeb17
9b40d8d
 
 
a4315ce
9b40d8d
 
c32f608
5758799
 
 
 
 
 
c1d8f2a
5758799
9b40d8d
 
1aa8118
9b40d8d
 
 
 
 
 
efa0646
5758799
 
 
2fdeb17
5758799
 
9b40d8d
5758799
3e74d12
 
 
 
fe14dd8
3e74d12
 
 
 
fe14dd8
 
5758799
3e74d12
 
 
 
5758799
3e74d12
 
 
 
 
5758799
3e74d12
 
 
 
 
 
 
 
5758799
3e74d12
 
 
 
fe14dd8
 
3e74d12
 
 
 
 
5758799
2fab7d3
5758799
2fdeb17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import time
import torch
from flask import Flask, render_template, request, jsonify
from simple_salesforce import Salesforce
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig  # Import AutoConfig for the config object
from waitress import serve

# Flask setup
app = Flask(__name__, template_folder="templates")
app.secret_key = os.urandom(24)

# Check for available GPU
device = "cuda" if torch.cuda.is_available() else "cpu"

# Set up Whisper model config
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})  # Set timeout to 60 seconds

# Salesforce connection
try:
    print("Attempting to connect to Salesforce...")
    sf = Salesforce(username='your_username', password='your_password', security_token='your_security_token')
    print("Connected to Salesforce successfully!")
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")

# Function to generate audio prompt using gTTS
def generate_audio_prompt(text, filename):
    try:
        tts = gTTS(text)
        tts.save(os.path.join("static", filename))
    except Exception as e:
        print(f"Error generating audio prompt: {e}")
        time.sleep(5)
        generate_audio_prompt(text, filename)

# Example prompts for voice interaction
prompts = {
    "welcome": "Welcome to Biryani Hub.",
    "ask_name": "Tell me your name.",
    "ask_email": "Please provide your email address.",
    "thank_you": "Thank you for registration."
}

# Generate audio prompts
for key, text in prompts.items():
    generate_audio_prompt(text, f"{key}.mp3")

# Function to check if the audio is silent
def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)
    return len(nonsilent_parts) == 0

# Function to fetch menu items from Salesforce
def get_menu_items():
    try:
        # Salesforce query to fetch all menu items
        query = """
            SELECT Name, Price__c, Ingredients__c, Category__c 
            FROM Menu_Item__c
        """
        result = sf.query(query)
        menu_items = []
        for item in result["records"]:
            menu_items.append({
                "name": item["Name"],
                "price": item["Price__c"],
                "ingredients": item["Ingredients__c"],
                "category": item["Category__c"]
            })
        return menu_items
    except Exception as e:
        print(f"Error fetching menu items: {str(e)}")
        return []

# Function to check if the customer exists in Salesforce (login check)
def get_customer_login(name, email, phone_number):
    try:
        # Salesforce query to fetch customer based on Name, Email, and Phone Number
        query = f"""
            SELECT Id, Name, Email__c, Phone_Number__c
            FROM Customer_Login__c
            WHERE Name = '{name}'
            AND Email__c = '{email}'
            AND Phone_Number__c = '{phone_number}'
        """
        result = sf.query(query)
        if result["records"]:
            customer = result["records"][0]
            return {
                "id": customer["Id"],
                "name": customer["Name"],
                "email": customer["Email__c"],
                "phone": customer["Phone_Number__c"]
            }
        else:
            return None
    except Exception as e:
        print(f"Error fetching customer login details: {str(e)}")
        return None

# Function to create a new customer login in Salesforce
def create_customer_login(name, email, phone):
    try:
        # Create a new customer login record in Salesforce
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone
        })
        return customer_login
    except Exception as e:
        print(f"Error creating customer login: {str(e)}")
        return None

# Home Route (loads index.html)
@app.route("/", methods=["GET"])
def index():
    return render_template("index.html")

# Dashboard Route
@app.route("/dashboard", methods=["GET"])
def dashboard():
    return render_template("dashboard.html")

# Menu Page Route
@app.route("/menu_page", methods=["GET"])
def menu_page():
    menu_items = get_menu_items()
    return render_template("menu_page.html", menu=menu_items)

# Login API
@app.route('/login', methods=['POST'])
def login():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    phone_number = data.get('phone_number')

    if not name or not email or not phone_number:
        return jsonify({'error': 'Missing required fields'}), 400

    # Check if the customer exists in Salesforce
    customer = get_customer_login(name, email, phone_number)
    if customer:
        return jsonify({'success': True, 'customer': customer}), 200
    else:
        return jsonify({'error': 'Customer not found'}), 404

# Register API (Create customer login)
@app.route("/submit", methods=["POST"])
def submit():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    phone = data.get('phone')

    if not name or not email or not phone:
        return jsonify({'error': 'Missing data'}), 400

    # Create customer login record in Salesforce
    customer_login = create_customer_login(name, email, phone)
    if customer_login:
        return jsonify({'success': True}), 200
    else:
        return jsonify({'error': 'Failed to create customer record'}), 500

# Transcribe Audio API
@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        # Convert the audio to WAV format and check if it contains speech
        convert_to_wav(input_audio_path, output_audio_path)
        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400

        # Transcribe the audio using Whisper model
        asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
        result = asr_pipeline(output_audio_path)

        transcribed_text = result["text"].strip().capitalize()

        # Extract details from transcribed text (Assumed format: Name Email Phone)
        parts = transcribed_text.split()
        name = parts[0] if len(parts) > 0 else "Unknown Name"
        email = parts[1] if '@' in parts[1] else "[email protected]"
        phone_number = parts[2] if len(parts) > 2 else "0000000000"

        confirmation = f"Is this correct? Name: {name}, Email: {email}, Phone: {phone_number}"
        generate_audio_prompt(confirmation, "confirmation.mp3")

        # Create a customer login record
        salesforce_response = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone_number
        })

        return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})

    except Exception as e:
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

# Start the Flask server
if __name__ == "__main__":
    print("Starting Flask API Server on port 7860...")
    serve(app, host="0.0.0.0", port=7860)