File size: 7,441 Bytes
2fab7d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
from flask import Flask, render_template, request, jsonify
import json
import os
from transformers import pipeline
from gtts import gTTS
from pydub import AudioSegment
from pydub.silence import detect_nonsilent
from transformers import AutoConfig  # Import AutoConfig for the config object
import time
from waitress import serve
from simple_salesforce import Salesforce
import requests  # Import requests for exception handling

app = Flask(__name__)

# Use whisper-small for faster processing and better speed
device = "cuda" if torch.cuda.is_available() else "cpu"

# Create config object to set timeout and other parameters
config = AutoConfig.from_pretrained("openai/whisper-small")
config.update({"timeout": 60})  # Set timeout to 60 seconds

# Your function where you generate and save the audio
def generate_audio_prompt(text, filename):
    try:
        tts = gTTS(text)
        tts.save(os.path.join("static", filename))
    except gtts.tts.gTTSError as e:
        print(f"Error: {e}")
        print("Retrying after 5 seconds...")
        time.sleep(5)  # Wait for 5 seconds before retrying
        generate_audio_prompt(text, filename)

# Generate required voice prompts
prompts = {
    "welcome": "Welcome to Biryani Hub.",
    "ask_name": "Tell me your name.",
    "ask_email": "Please provide your email address.",
    "thank_you": "Thank you for registration."
}

for key, text in prompts.items():
    generate_audio_prompt(text, f"{key}.mp3")

# Symbol mapping for proper recognition
SYMBOL_MAPPING = {
    "at the rate": "@",
    "at": "@",
    "dot": ".",
    "underscore": "_",
    "hash": "#",
    "plus": "+",
    "dash": "-",
    "comma": ",",
    "space": " "
}

# Function to convert audio to WAV format
def convert_to_wav(input_path, output_path):
    try:
        audio = AudioSegment.from_file(input_path)
        audio = audio.set_frame_rate(16000).set_channels(1)  # Convert to 16kHz, mono
        audio.export(output_path, format="wav")
    except Exception as e:
        print(f"Error: {str(e)}")
        raise Exception(f"Audio conversion failed: {str(e)}")

# Function to check if audio contains actual speech
def is_silent_audio(audio_path):
    audio = AudioSegment.from_wav(audio_path)
    nonsilent_parts = detect_nonsilent(audio, min_silence_len=500, silence_thresh=audio.dBFS-16)  # Reduced silence duration
    print(f"Detected nonsilent parts: {nonsilent_parts}")
    return len(nonsilent_parts) == 0  # If no speech detected

# Salesforce connection details
try:
    print("Attempting to connect to Salesforce...")
    sf = Salesforce(username='[email protected]', password='Sati@1020', security_token='sSSjyhInIsUohKpG8sHzty2q')
    print("Connected to Salesforce successfully!")
    print("User Info:", sf.UserInfo)  # Log the user info to verify the connection
except Exception as e:
    print(f"Failed to connect to Salesforce: {str(e)}")

# Function to create Salesforce record
# API endpoint to receive data from voice bot
@app.route('/login', methods=['POST'])
def login():
    # Get data from voice bot (name, email, phone number)
    data = request.json  # Assuming voice bot sends JSON data
    
    name = data.get('name')
    email = data.get('email')
    phone_number = data.get('phone_number')

    if not name or not email or not phone_number:
        return jsonify({'error': 'Missing required fields'}), 400

    # Create a record in Salesforce
    try:
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone_number
        })
        return jsonify({'success': True, 'id': customer_login['id']}), 200
    except Exception as e:
        return jsonify({'error': f'Failed to create record in Salesforce: {str(e)}'}), 500

@app.route("/submit", methods=["POST"])
def submit():
    data = request.json
    name = data.get('name')
    email = data.get('email')
    phone = data.get('phone')

    if not name or not email or not phone:
        return jsonify({'error': 'Missing data'}), 400

    try:
        # Create Salesforce record
        customer_login = sf.Customer_Login__c.create({
            'Name': name,
            'Email__c': email,
            'Phone_Number__c': phone
        })

        if customer_login.get('id'):
            return jsonify({'success': True})
        else:
            return jsonify({'error': 'Failed to create record'}), 500

    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route("/")
def index():
    return render_template("index.html")

@app.route("/transcribe", methods=["POST"])
def transcribe():
    if "audio" not in request.files:
        print("No audio file provided")
        return jsonify({"error": "No audio file provided"}), 400

    audio_file = request.files["audio"]
    input_audio_path = os.path.join("static", "temp_input.wav")
    output_audio_path = os.path.join("static", "temp.wav")
    audio_file.save(input_audio_path)

    try:
        # Convert to WAV
        convert_to_wav(input_audio_path, output_audio_path)

        # Check for silence
        if is_silent_audio(output_audio_path):
            return jsonify({"error": "No speech detected. Please try again."}), 400
        else:
            print("Audio contains speech, proceeding with transcription.")

        # Use Whisper ASR model for transcription
        result = None
        retry_attempts = 3
        for attempt in range(retry_attempts):
            try:
                result = pipeline("automatic-speech-recognition", model="openai/whisper-small", device=0 if torch.cuda.is_available() else -1, config=config)
                print(f"Transcribed text: {result['text']}")
                break
            except requests.exceptions.ReadTimeout:
                print(f"Timeout occurred, retrying attempt {attempt + 1}/{retry_attempts}...")
                time.sleep(5)

        if result is None:
            return jsonify({"error": "Unable to transcribe audio after retries."}), 500

        transcribed_text = result["text"].strip().capitalize()
        print(f"Transcribed text: {transcribed_text}")

        # Extract name, email, and phone number from the transcribed text
        parts = transcribed_text.split()
        name = parts[0] if len(parts) > 0 else "Unknown Name"
        email = parts[1] if '@' in parts[1] else "[email protected]"
        phone_number = parts[2] if len(parts) > 2 else "0000000000"
        print(f"Parsed data - Name: {name}, Email: {email}, Phone Number: {phone_number}")

        # Create record in Salesforce
        salesforce_response = create_salesforce_record(name, email, phone_number)

        # Log the Salesforce response
        print(f"Salesforce record creation response: {salesforce_response}")

        # Check if the response contains an error
        if "error" in salesforce_response:
            print(f"Error creating record in Salesforce: {salesforce_response['error']}")
            return jsonify(salesforce_response), 500

        # If creation was successful, return the details
        return jsonify({"text": transcribed_text, "salesforce_record": salesforce_response})

    except Exception as e:
        print(f"Error in transcribing or processing: {str(e)}")
        return jsonify({"error": f"Speech recognition error: {str(e)}"}), 500

# Start Production Server
if __name__ == "__main__":
    serve(app, host="0.0.0.0", port=7860)