Spaces:
Runtime error
Runtime error
| import torch | |
| from .masked_drop import MaskedDrop | |
| from .spatial_pool import SpatialPool | |
| from .perceiver import PerceiverResampler | |
| from .qformer import Qformer | |
| class IdentityMap(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x, *args, **kwargs): | |
| return x | |
| def config(self): | |
| return {"mm_resampler_type": None} | |
| def build_vision_resampler(model_args, delay_load=False, **kwargs): | |
| resampler_type = getattr(model_args, "mm_resampler_type", None) | |
| if resampler_type == "masked_drop": | |
| return MaskedDrop(model_args) | |
| elif resampler_type == "spatial_pool": | |
| return SpatialPool(model_args, **kwargs) | |
| elif resampler_type == "perceiver": | |
| return PerceiverResampler(model_args, **kwargs) | |
| elif resampler_type == "qformer": | |
| return Qformer(model_args, **kwargs) | |
| elif resampler_type is None: | |
| return IdentityMap() | |
| raise ValueError(f"Unknown resampler type: {resampler_type}") | |