File size: 24,438 Bytes
f7beec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
import argparse
import ast
import glob
import pickle
import traceback
from datetime import datetime
import pandas as pd
import gradio as gr
import numpy as np
basic_component_values = [None] * 6
leader_component_values = [None] * 5
def make_default_md_1():
leaderboard_md = f"""
# 🏆 LLM Arena in Russian: Leaderboard
"""
return leaderboard_md
def make_default_md_2():
leaderboard_md = f"""
The LLM Arena platform is an open crowdsourcing platform for evaluating large language models (LLM) in Russian. We collect pairwise comparisons from people to rank LLMs using the Bradley-Terry model and display model ratings on the Elo scale.
Chatbot Arena in Russian depends on community participation, so please contribute by casting your vote!
- To **add your model** to the comparison, contact us on TG: [Group](https://t.me/+bFEOl-Bdmok4NGUy)
- If you **found a bug** or **have a suggestion**, contact us: [Roman](https://t.me/roman_kucev)
- You can contribute your vote at llmarena.ru!
"""
return leaderboard_md
def make_arena_leaderboard_md(arena_df, last_updated_time):
total_votes = sum(arena_df["num_battles"])
total_models = len(arena_df)
space = " "
leaderboard_md = f"""
Total # of models: **{total_models}**.{space} Total # of votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.
***Rank (UB)**: model rating (upper bound), determined as one plus the number of models that are statistically better than the target model.
Model A is statistically better than Model B when the lower bound of Model A's rating is higher than the upper bound of Model B's rating (with a 95% confidence interval).
See Figure 1 below for a visualization of the confidence intervals of model ratings.
"""
return leaderboard_md
def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
total_votes = sum(arena_df["num_battles"])
total_models = len(arena_df)
space = " "
total_subset_votes = sum(arena_subset_df["num_battles"])
total_subset_models = len(arena_subset_df)
leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### {space} #models: **{total_subset_models} ({round(total_subset_models / total_models * 100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes / total_votes * 100)}%)**{space}
"""
return leaderboard_md
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h == "Arena Elo rating":
if v != "-":
v = int(ast.literal_eval(v))
else:
v = np.nan
elif h == "MMLU":
if v != "-":
v = round(ast.literal_eval(v) * 100, 1)
else:
v = np.nan
elif h == "MT-bench (win rate %)":
if v != "-":
v = round(ast.literal_eval(v[:-1]), 1)
else:
v = np.nan
elif h == "MT-bench (score)":
if v != "-":
v = round(ast.literal_eval(v), 2)
else:
v = np.nan
item[h] = v
if add_hyperlink:
item["Model"] = model_hyperlink(item["Model"], item["Link"])
rows.append(item)
return rows
def create_ranking_str(ranking, ranking_difference):
if ranking_difference > 0:
return f"{int(ranking)} \u2191"
elif ranking_difference < 0:
return f"{int(ranking)} \u2193"
else:
return f"{int(ranking)}"
def recompute_final_ranking(arena_df):
# compute ranking based on CI
ranking = {}
for i, model_a in enumerate(arena_df.index):
ranking[model_a] = 1
for j, model_b in enumerate(arena_df.index):
if i == j:
continue
if (
arena_df.loc[model_b]["rating_q025"]
> arena_df.loc[model_a]["rating_q975"]
):
ranking[model_a] += 1
return list(ranking.values())
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
arena_df = arena_df.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
arena_df = arena_df.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
# sort by rating
if arena_subset_df is not None:
# filter out models not in the arena_df
arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
# keep only the models in the subset in arena_df and recompute final_ranking
arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
# recompute final ranking
arena_df["final_ranking"] = recompute_final_ranking(arena_df)
# assign ranking by the order
arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
# join arena_df and arena_subset_df on index
arena_df = arena_subset_df.join(
arena_df["final_ranking"], rsuffix="_global", how="inner"
)
arena_df["ranking_difference"] = (
arena_df["final_ranking_global"] - arena_df["final_ranking"]
)
arena_df = arena_df.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
arena_df["final_ranking"] = arena_df.apply(
lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]),
axis=1,
)
arena_df["final_ranking"] = arena_df["final_ranking"].astype(str)
values = []
for i in range(len(arena_df)):
row = []
model_key = arena_df.index[i]
try:
model_name = model_table_df[model_table_df["key"] == model_key][
"Model"
].values[0]
ranking = arena_df.iloc[i].get("final_ranking") or i + 1
row.append(ranking)
if arena_subset_df is not None:
row.append(arena_df.iloc[i].get("ranking_difference") or 0)
row.append(model_name)
row.append(round(arena_df.iloc[i]["rating"]))
upper_diff = round(
arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
)
lower_diff = round(
arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
)
row.append(f"+{upper_diff}/-{lower_diff}")
row.append(round(arena_df.iloc[i]["num_battles"]))
row.append(
model_table_df[model_table_df["key"] == model_key][
"Organization"
].values[0]
)
row.append(
model_table_df[model_table_df["key"] == model_key]["License"].values[0]
)
cutoff_date = model_table_df[model_table_df["key"] == model_key][
"Knowledge cutoff date"
].values[0]
if cutoff_date == "-":
row.append("Unknown")
else:
row.append(cutoff_date)
values.append(row)
except Exception as e:
traceback.print_exc()
print(f"{model_key} - {e}")
return values
key_to_category_name = {
"full": "Overall",
"crowdsourcing/simple_prompts": "crowdsourcing/simple_prompts",
"site_visitors/medium_prompts": "site_visitors/medium_prompts",
"site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style control"
}
cat_name_to_explanation = {
"Overall": "All queries",
"crowdsourcing/simple_prompts": "Queries collected through crowdsourcing. Mostly simple ones.",
"site_visitors/medium_prompts": "Queries from website visitors. Contain more complex prompts.",
"site_visitors/medium_prompts:style control": "Queries from website visitors. Contain more complex prompts. [Reduced stylistic influence](https://lmsys.org/blog/2024-08-28-style-control/) of the response on the rating."
}
cat_name_to_baseline = {
"Hard Prompts (English)": "English",
}
actual_categories = [
"Overall",
"crowdsourcing/simple_prompts",
"site_visitors/medium_prompts",
"site_visitors/medium_prompts:style control"
]
def read_elo_file(elo_results_file, leaderboard_table_file):
arena_dfs = {}
category_elo_results = {}
with open(elo_results_file, "rb") as fin:
elo_results = pickle.load(fin)
last_updated_time = None
if "full" in elo_results:
last_updated_time = elo_results["full"]["last_updated_datetime"].split(
" "
)[0]
for k in key_to_category_name.keys():
if k not in elo_results:
continue
arena_dfs[key_to_category_name[k]] = elo_results[k][
"leaderboard_table_df"
]
category_elo_results[key_to_category_name[k]] = elo_results[k]
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
return last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df
def build_leaderboard_tab(
elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
):
arena_dfs = {}
arena_df = pd.DataFrame()
category_elo_results = {}
last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
p2 = category_elo_results["Overall"]["battle_count_heatmap"]
p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
p4 = category_elo_results["Overall"]["average_win_rate_bar"]
arena_df = arena_dfs["Overall"]
default_md = make_default_md_1()
default_md_2 = make_default_md_2()
with gr.Row():
with gr.Column(scale=4):
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
with gr.Column(scale=1):
vote_button = gr.Button("Vote!", link="https://llmarena.ru")
md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
with gr.Tabs() as tabs:
arena_table_vals = get_arena_table(arena_df, model_table_df)
with gr.Tab("Арена", id=0):
md = make_arena_leaderboard_md(arena_df, last_updated_time)
lb_description = gr.Markdown(md, elem_id="leaderboard_markdown")
with gr.Row():
with gr.Column(scale=2):
category_dropdown = gr.Dropdown(
choices=actual_categories,
label="Category",
value="Overall",
)
default_category_details = make_category_arena_leaderboard_md(
arena_df, arena_df, name="Overall"
)
with gr.Column(scale=4, variant="panel"):
category_deets = gr.Markdown(
default_category_details, elem_id="category_deets"
)
arena_vals = pd.DataFrame(
arena_table_vals,
columns=[
"Rank* (UB)",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
)
elo_display_df = gr.Dataframe(
headers=[
"Rank* (UB)",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"str",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_vals.style,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 100, 100, 90, 130, 150, 100],
wrap=True,
)
gr.Markdown(
elem_id="leaderboard_markdown",
)
leader_component_values[:] = [default_md, p1, p2, p3, p4]
if show_plot:
more_stats_md = gr.Markdown(
f"""## More statistics on Chatbot Arena""",
elem_id="leaderboard_header_markdown",
)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
elem_id="plot-title",
)
plot_3 = gr.Plot(p3, show_label=False)
with gr.Column():
gr.Markdown(
"#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
elem_id="plot-title",
)
plot_4 = gr.Plot(p4, show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
elem_id="plot-title",
)
plot_1 = gr.Plot(
p1, show_label=False, elem_id="plot-container"
)
with gr.Column():
gr.Markdown(
"#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
elem_id="plot-title",
)
plot_2 = gr.Plot(p2, show_label=False)
if not show_plot:
gr.Markdown(
"""
""",
elem_id="leaderboard_markdown",
)
else:
pass
def update_leaderboard_df(arena_table_vals):
elo_datarame = pd.DataFrame(
arena_table_vals,
columns=[
"Rank* (UB)",
"Delta",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
)
def highlight_max(s):
return [
"color: green; font-weight: bold"
if "\u2191" in v
else "color: red; font-weight: bold"
if "\u2193" in v
else ""
for v in s
]
def highlight_rank_max(s):
return [
"color: green; font-weight: bold"
if v > 0
else "color: red; font-weight: bold"
if v < 0
else ""
for v in s
]
return elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
highlight_rank_max, subset=["Delta"]
)
def update_leaderboard_and_plots(category):
_, arena_dfs, category_elo_results, _ , model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
arena_subset_df = arena_dfs[category]
arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300]
elo_subset_results = category_elo_results[category]
baseline_category = cat_name_to_baseline.get(category, "Overall")
arena_df = arena_dfs[baseline_category]
arena_values = get_arena_table(
arena_df,
model_table_df,
arena_subset_df=arena_subset_df if category != "Overall" else None,
)
if category != "Overall":
arena_values = update_leaderboard_df(arena_values)
arena_values = gr.Dataframe(
headers=[
"Rank* (UB)",
"Delta",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"str",
"number",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_values,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100],
wrap=True,
)
else:
arena_values = gr.Dataframe(
headers=[
"Rank* (UB)",
"Model",
"Arena Elo",
"95% CI",
"Votes",
"Organization",
"License",
"Knowledge Cutoff",
],
datatype=[
"str",
"markdown",
"number",
"str",
"number",
"str",
"str",
"str",
],
value=arena_values,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 100, 100, 90, 140, 150, 100],
wrap=True,
)
p1 = elo_subset_results["win_fraction_heatmap"]
p2 = elo_subset_results["battle_count_heatmap"]
p3 = elo_subset_results["bootstrap_elo_rating"]
p4 = elo_subset_results["average_win_rate_bar"]
more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
"""
leaderboard_md = make_category_arena_leaderboard_md(
arena_df, arena_subset_df, name=category
)
return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md
if leaderboard_table_file:
category_dropdown.change(
fn=update_leaderboard_and_plots,
inputs=[category_dropdown],
outputs=[
elo_display_df,
plot_1,
plot_2,
plot_3,
plot_4,
more_stats_md,
category_deets,
],
)
if show_plot and leaderboard_table_file:
return [md_1, md_2, lb_description, category_deets, elo_display_df, plot_1, plot_2, plot_3, plot_4]
return [md_1]
def build_demo(elo_results_file, leaderboard_table_file):
text_size = gr.themes.sizes.text_lg
theme = gr.themes.Default.load("theme.json")
theme.text_size = text_size
theme.set(
button_large_text_size="40px",
button_small_text_size="40px",
button_large_text_weight="1000",
button_small_text_weight="1000",
button_shadow="*shadow_drop_lg",
button_shadow_hover="*shadow_drop_lg",
checkbox_label_shadow="*shadow_drop_lg",
button_shadow_active="*shadow_inset",
button_secondary_background_fill="*primary_300",
button_secondary_background_fill_dark="*primary_700",
button_secondary_background_fill_hover="*primary_200",
button_secondary_background_fill_hover_dark="*primary_500",
button_secondary_text_color="*primary_800",
button_secondary_text_color_dark="white",
)
with gr.Blocks(
title="LLM arena: leaderboard",
theme=theme,
css=block_css,
) as demo:
build_leaderboard_tab(
elo_results_file, leaderboard_table_file, show_plot=True, mirror=True
)
return demo
block_css = """
#notice_markdown .prose {
font-size: 110% !important;
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#arena_leaderboard_dataframe table {
font-size: 110%;
}
#full_leaderboard_dataframe table {
font-size: 110%;
}
#model_description_markdown {
font-size: 110% !important;
}
#leaderboard_markdown .prose {
font-size: 110% !important;
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
#about_markdown .prose {
font-size: 110% !important;
}
#ack_markdown .prose {
font-size: 110% !important;
}
#chatbot .prose {
font-size: 105% !important;
}
.sponsor-image-about img {
margin: 0 20px;
margin-top: 20px;
height: 40px;
max-height: 100%;
width: auto;
float: left;
}
.chatbot h1, h2, h3 {
margin-top: 8px; /* Adjust the value as needed */
margin-bottom: 0px; /* Adjust the value as needed */
padding-bottom: 0px;
}
.chatbot h1 {
font-size: 130%;
}
.chatbot h2 {
font-size: 120%;
}
.chatbot h3 {
font-size: 110%;
}
.chatbot p:not(:first-child) {
margin-top: 8px;
}
.typing {
display: inline-block;
}
.cursor {
display: inline-block;
width: 7px;
height: 1em;
background-color: black;
vertical-align: middle;
animation: blink 1s infinite;
}
.dark .cursor {
display: inline-block;
width: 7px;
height: 1em;
background-color: white;
vertical-align: middle;
animation: blink 1s infinite;
}
@keyframes blink {
0%, 50% { opacity: 1; }
50.1%, 100% { opacity: 0; }
}
.app {
max-width: 100% !important;
padding: 20px !important;
}
a {
color: #1976D2; /* Your current link color, a shade of blue */
text-decoration: none; /* Removes underline from links */
}
a:hover {
color: #63A4FF; /* This can be any color you choose for hover */
text-decoration: underline; /* Adds underline on hover */
}
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
elo_result_files = glob.glob("elo_results_*.pkl")
elo_result_files.sort(key=lambda x: int(x[12:-4]))
elo_result_file = elo_result_files[-1]
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
leaderboard_table_file = leaderboard_table_files[-1]
demo = build_demo(elo_result_file, leaderboard_table_file)
demo.launch(show_api=False) |