File size: 24,438 Bytes
f7beec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import argparse
import ast
import glob
import pickle
import traceback
from datetime import datetime

import pandas as pd
import gradio as gr
import numpy as np


basic_component_values = [None] * 6
leader_component_values = [None] * 5

def make_default_md_1():
    leaderboard_md = f"""
# 🏆 LLM Arena in Russian: Leaderboard
"""
    return leaderboard_md


def make_default_md_2():
    leaderboard_md = f"""
    
    The LLM Arena platform is an open crowdsourcing platform for evaluating large language models (LLM) in Russian. We collect pairwise comparisons from people to rank LLMs using the Bradley-Terry model and display model ratings on the Elo scale.
    Chatbot Arena in Russian depends on community participation, so please contribute by casting your vote!

    - To **add your model** to the comparison, contact us on TG: [Group](https://t.me/+bFEOl-Bdmok4NGUy)
    - If you **found a bug** or **have a suggestion**, contact us: [Roman](https://t.me/roman_kucev)
    - You can contribute your vote at llmarena.ru!
    """

    return leaderboard_md



def make_arena_leaderboard_md(arena_df, last_updated_time):
    total_votes = sum(arena_df["num_battles"])
    total_models = len(arena_df)
    space = "   "

    leaderboard_md = f"""
Total # of models: **{total_models}**.{space} Total # of votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.

***Rank (UB)**: model rating (upper bound), determined as one plus the number of models that are statistically better than the target model.
Model A is statistically better than Model B when the lower bound of Model A's rating is higher than the upper bound of Model B's rating (with a 95% confidence interval).
See Figure 1 below for a visualization of the confidence intervals of model ratings.
"""
    return leaderboard_md



def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
    total_votes = sum(arena_df["num_battles"])
    total_models = len(arena_df)
    space = "   "
    total_subset_votes = sum(arena_subset_df["num_battles"])
    total_subset_models = len(arena_subset_df)
    leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### {space} #models: **{total_subset_models} ({round(total_subset_models / total_models * 100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes / total_votes * 100)}%)**{space}
"""
    return leaderboard_md



def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        for j in range(len(heads)):
            item = {}
            for h, v in zip(heads, row):
                if h == "Arena Elo rating":
                    if v != "-":
                        v = int(ast.literal_eval(v))
                    else:
                        v = np.nan
                elif h == "MMLU":
                    if v != "-":
                        v = round(ast.literal_eval(v) * 100, 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (win rate %)":
                    if v != "-":
                        v = round(ast.literal_eval(v[:-1]), 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (score)":
                    if v != "-":
                        v = round(ast.literal_eval(v), 2)
                    else:
                        v = np.nan
                item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
        rows.append(item)

    return rows


def create_ranking_str(ranking, ranking_difference):
    if ranking_difference > 0:
        return f"{int(ranking)} \u2191"
    elif ranking_difference < 0:
        return f"{int(ranking)} \u2193"
    else:
        return f"{int(ranking)}"


def recompute_final_ranking(arena_df):
    # compute ranking based on CI
    ranking = {}
    for i, model_a in enumerate(arena_df.index):
        ranking[model_a] = 1
        for j, model_b in enumerate(arena_df.index):
            if i == j:
                continue
            if (
                arena_df.loc[model_b]["rating_q025"]
                > arena_df.loc[model_a]["rating_q975"]
            ):
                ranking[model_a] += 1
    return list(ranking.values())


def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
    arena_df = arena_df.sort_values(
        by=["final_ranking", "rating"], ascending=[True, False]
    )
    arena_df["final_ranking"] = recompute_final_ranking(arena_df)
    arena_df = arena_df.sort_values(
        by=["final_ranking", "rating"], ascending=[True, False]
    )

    # sort by rating
    if arena_subset_df is not None:
        # filter out models not in the arena_df
        arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
        arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
        arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
        # keep only the models in the subset in arena_df and recompute final_ranking
        arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
        # recompute final ranking
        arena_df["final_ranking"] = recompute_final_ranking(arena_df)

        # assign ranking by the order
        arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
        arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
        # join arena_df and arena_subset_df on index
        arena_df = arena_subset_df.join(
            arena_df["final_ranking"], rsuffix="_global", how="inner"
        )
        arena_df["ranking_difference"] = (
            arena_df["final_ranking_global"] - arena_df["final_ranking"]
        )

        arena_df = arena_df.sort_values(
            by=["final_ranking", "rating"], ascending=[True, False]
        )
        arena_df["final_ranking"] = arena_df.apply(
            lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]),
            axis=1,
        )

    arena_df["final_ranking"] = arena_df["final_ranking"].astype(str)

    values = []
    for i in range(len(arena_df)):
        row = []
        model_key = arena_df.index[i]
        try:
            model_name = model_table_df[model_table_df["key"] == model_key][
                "Model"
            ].values[0]
            ranking = arena_df.iloc[i].get("final_ranking") or i + 1
            row.append(ranking)
            if arena_subset_df is not None:
                row.append(arena_df.iloc[i].get("ranking_difference") or 0)
            row.append(model_name)
            row.append(round(arena_df.iloc[i]["rating"]))
            upper_diff = round(
                arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
            )
            lower_diff = round(
                arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
            )
            row.append(f"+{upper_diff}/-{lower_diff}")
            row.append(round(arena_df.iloc[i]["num_battles"]))
            row.append(
                model_table_df[model_table_df["key"] == model_key][
                    "Organization"
                ].values[0]
            )
            row.append(
                model_table_df[model_table_df["key"] == model_key]["License"].values[0]
            )
            cutoff_date = model_table_df[model_table_df["key"] == model_key][
                "Knowledge cutoff date"
            ].values[0]
            if cutoff_date == "-":
                row.append("Unknown")
            else:
                row.append(cutoff_date)
            values.append(row)
        except Exception as e:
            traceback.print_exc()
            print(f"{model_key} - {e}")
    return values


key_to_category_name = {
    "full": "Overall",
    "crowdsourcing/simple_prompts": "crowdsourcing/simple_prompts",
    "site_visitors/medium_prompts": "site_visitors/medium_prompts",
    "site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style control"
}
cat_name_to_explanation = {
    "Overall": "All queries",
    "crowdsourcing/simple_prompts": "Queries collected through crowdsourcing. Mostly simple ones.",
    "site_visitors/medium_prompts": "Queries from website visitors. Contain more complex prompts.",
    "site_visitors/medium_prompts:style control": "Queries from website visitors. Contain more complex prompts. [Reduced stylistic influence](https://lmsys.org/blog/2024-08-28-style-control/) of the response on the rating."
}

cat_name_to_baseline = {
    "Hard Prompts (English)": "English",
}

actual_categories = [
    "Overall",
    "crowdsourcing/simple_prompts",
    "site_visitors/medium_prompts",
    "site_visitors/medium_prompts:style control"
]


def read_elo_file(elo_results_file, leaderboard_table_file):
    arena_dfs = {}
    category_elo_results = {}
    with open(elo_results_file, "rb") as fin:
        elo_results = pickle.load(fin)
        last_updated_time = None
        if "full" in elo_results:
            last_updated_time = elo_results["full"]["last_updated_datetime"].split(
                " "
            )[0]
            for k in key_to_category_name.keys():
                if k not in elo_results:
                    continue
                arena_dfs[key_to_category_name[k]] = elo_results[k][
                    "leaderboard_table_df"
                ]
                category_elo_results[key_to_category_name[k]] = elo_results[k]

    data = load_leaderboard_table_csv(leaderboard_table_file)
        

    model_table_df = pd.DataFrame(data)

    return last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df


def build_leaderboard_tab(
    elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
):
    arena_dfs = {}
    arena_df = pd.DataFrame()
    category_elo_results = {}
        
    last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)

    p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
    p2 = category_elo_results["Overall"]["battle_count_heatmap"]
    p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
    p4 = category_elo_results["Overall"]["average_win_rate_bar"]
    arena_df = arena_dfs["Overall"]
    default_md = make_default_md_1()
    default_md_2 = make_default_md_2()
    
    with gr.Row():
        with gr.Column(scale=4):
            md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
        with gr.Column(scale=1):
            vote_button = gr.Button("Vote!", link="https://llmarena.ru")
    md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
    
    if leaderboard_table_file:
        data = load_leaderboard_table_csv(leaderboard_table_file)

        model_table_df = pd.DataFrame(data)

        with gr.Tabs() as tabs:
            arena_table_vals = get_arena_table(arena_df, model_table_df)

            with gr.Tab("Арена", id=0):
                md = make_arena_leaderboard_md(arena_df, last_updated_time)

                lb_description = gr.Markdown(md, elem_id="leaderboard_markdown")
                with gr.Row():
                    with gr.Column(scale=2):
                        category_dropdown = gr.Dropdown(
                            choices=actual_categories,
                            label="Category",
                            value="Overall",
                        )
                    default_category_details = make_category_arena_leaderboard_md(
                            arena_df, arena_df, name="Overall"
                        )

                    with gr.Column(scale=4, variant="panel"):
                        category_deets = gr.Markdown(
                            default_category_details, elem_id="category_deets"
                        )

                arena_vals = pd.DataFrame(
                    arena_table_vals,
                    columns=[
                        "Rank* (UB)",
                        "Model",
                        "Arena Elo",
                        "95% CI",
                        "Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                )
                elo_display_df = gr.Dataframe(
                    headers=[
                        "Rank* (UB)",
                        "Model",
                        "Arena Elo",
                        "95% CI",
                        "Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                        "str",
                    ],
                    value=arena_vals.style,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 190, 100, 100, 90, 130, 150, 100],
                    wrap=True,
                )

                gr.Markdown(
                    elem_id="leaderboard_markdown",
                )

                leader_component_values[:] = [default_md, p1, p2, p3, p4]

                if show_plot:
                    more_stats_md = gr.Markdown(
                        f"""## More statistics on Chatbot Arena""",
                        elem_id="leaderboard_header_markdown",
                    )
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
                                elem_id="plot-title",
                            )
                            plot_3 = gr.Plot(p3, show_label=False)
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
                                elem_id="plot-title",
                            )
                            plot_4 = gr.Plot(p4, show_label=False)
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
                                elem_id="plot-title",
                            )
                            plot_1 = gr.Plot(
                                p1, show_label=False, elem_id="plot-container"
                            )
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
                                elem_id="plot-title",
                            )
                            plot_2 = gr.Plot(p2, show_label=False)

        if not show_plot:
            gr.Markdown(
                """
                """,
                elem_id="leaderboard_markdown",
            )
    else:
        pass

    def update_leaderboard_df(arena_table_vals):
        elo_datarame = pd.DataFrame(
            arena_table_vals,
            columns=[
                "Rank* (UB)",
                "Delta",
                "Model",
                "Arena Elo",
                "95% CI",
                "Votes",
                "Organization",
                "License",
                "Knowledge Cutoff",
            ],
        )

        def highlight_max(s):
            return [
                "color: green; font-weight: bold"
                if "\u2191" in v
                else "color: red; font-weight: bold"
                if "\u2193" in v
                else ""
                for v in s
            ]

        def highlight_rank_max(s):
            return [
                "color: green; font-weight: bold"
                if v > 0
                else "color: red; font-weight: bold"
                if v < 0
                else ""
                for v in s
            ]

        return elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
            highlight_rank_max, subset=["Delta"]
        )

    def update_leaderboard_and_plots(category):
        _, arena_dfs, category_elo_results, _ , model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)

        arena_subset_df = arena_dfs[category]
        arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 300]
        elo_subset_results = category_elo_results[category]

        baseline_category = cat_name_to_baseline.get(category, "Overall")
        arena_df = arena_dfs[baseline_category]
        arena_values = get_arena_table(
            arena_df,
            model_table_df,
            arena_subset_df=arena_subset_df if category != "Overall" else None,
        )
        if category != "Overall":
            arena_values = update_leaderboard_df(arena_values)
            arena_values = gr.Dataframe(
                headers=[
                    "Rank* (UB)",
                    "Delta",
                    "Model",
                    "Arena Elo",
                    "95% CI",
                    "Votes",
                    "Organization",
                    "License",
                    "Knowledge Cutoff",
                ],
                datatype=[
                    "str",
                    "number",
                    "markdown",
                    "number",
                    "str",
                    "number",
                    "str",
                    "str",
                    "str",
                ],
                value=arena_values,
                elem_id="arena_leaderboard_dataframe",
                height=700,
                column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100],
                wrap=True,
            )
        else:
            arena_values = gr.Dataframe(
                headers=[
                    "Rank* (UB)",
                    "Model",
                    "Arena Elo",
                    "95% CI",
                    "Votes",
                    "Organization",
                    "License",
                    "Knowledge Cutoff",
                ],
                datatype=[
                    "str",
                    "markdown",
                    "number",
                    "str",
                    "number",
                    "str",
                    "str",
                    "str",
                ],
                value=arena_values,
                elem_id="arena_leaderboard_dataframe",
                height=700,
                column_widths=[70, 190, 100, 100, 90, 140, 150, 100],
                wrap=True,
            )

        p1 = elo_subset_results["win_fraction_heatmap"]
        p2 = elo_subset_results["battle_count_heatmap"]
        p3 = elo_subset_results["bootstrap_elo_rating"]
        p4 = elo_subset_results["average_win_rate_bar"]
        more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
        """
        leaderboard_md = make_category_arena_leaderboard_md(
            arena_df, arena_subset_df, name=category
        )
        return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md

    if leaderboard_table_file:
        category_dropdown.change(
            fn=update_leaderboard_and_plots,
            inputs=[category_dropdown],
            outputs=[
                elo_display_df,
                plot_1,
                plot_2,
                plot_3,
                plot_4,
                more_stats_md,
                category_deets,
            ],
        )
    if show_plot and leaderboard_table_file:
        return [md_1, md_2, lb_description, category_deets, elo_display_df, plot_1, plot_2, plot_3, plot_4]
    return [md_1]


def build_demo(elo_results_file, leaderboard_table_file):
    text_size = gr.themes.sizes.text_lg
    theme = gr.themes.Default.load("theme.json")
    theme.text_size = text_size
    theme.set(
        button_large_text_size="40px",
        button_small_text_size="40px",
        button_large_text_weight="1000",
        button_small_text_weight="1000",
        button_shadow="*shadow_drop_lg",
        button_shadow_hover="*shadow_drop_lg",
        checkbox_label_shadow="*shadow_drop_lg",
        button_shadow_active="*shadow_inset",
        button_secondary_background_fill="*primary_300",
        button_secondary_background_fill_dark="*primary_700",
        button_secondary_background_fill_hover="*primary_200",
        button_secondary_background_fill_hover_dark="*primary_500",
        button_secondary_text_color="*primary_800",
        button_secondary_text_color_dark="white",
    )

    with gr.Blocks(
        title="LLM arena: leaderboard",
        theme=theme,
        css=block_css,
    ) as demo:
        build_leaderboard_tab(
            elo_results_file, leaderboard_table_file, show_plot=True, mirror=True
        )
    return demo

block_css = """
#notice_markdown .prose {
    font-size: 110% !important;
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#arena_leaderboard_dataframe table {
    font-size: 110%;
}
#full_leaderboard_dataframe table {
    font-size: 110%;
}
#model_description_markdown {
    font-size: 110% !important;
}
#leaderboard_markdown .prose {
    font-size: 110% !important;
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}
#leaderboard_dataframe td {
    line-height: 0.1em;
}
#about_markdown .prose {
    font-size: 110% !important;
}
#ack_markdown .prose {
    font-size: 110% !important;
}
#chatbot .prose {
    font-size: 105% !important;
}
.sponsor-image-about img {
    margin: 0 20px;
    margin-top: 20px;
    height: 40px;
    max-height: 100%;
    width: auto;
    float: left;
}

.chatbot h1, h2, h3 {
    margin-top: 8px; /* Adjust the value as needed */
    margin-bottom: 0px; /* Adjust the value as needed */
    padding-bottom: 0px;
}

.chatbot h1 {
    font-size: 130%;
}
.chatbot h2 {
    font-size: 120%;
}
.chatbot h3 {
    font-size: 110%;
}
.chatbot p:not(:first-child) {
    margin-top: 8px;
}

.typing {
    display: inline-block;
}

.cursor {
    display: inline-block;
    width: 7px;
    height: 1em;
    background-color: black;
    vertical-align: middle;
    animation: blink 1s infinite;
}

.dark .cursor {
    display: inline-block;
    width: 7px;
    height: 1em;
    background-color: white;
    vertical-align: middle;
    animation: blink 1s infinite;
}

@keyframes blink {
    0%, 50% { opacity: 1; }
    50.1%, 100% { opacity: 0; }
}

.app {
  max-width: 100% !important;
  padding: 20px !important;               
}

a {
    color: #1976D2; /* Your current link color, a shade of blue */
    text-decoration: none; /* Removes underline from links */
}
a:hover {
    color: #63A4FF; /* This can be any color you choose for hover */
    text-decoration: underline; /* Adds underline on hover */
}
"""


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--host", default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    args = parser.parse_args()

    elo_result_files = glob.glob("elo_results_*.pkl")
    elo_result_files.sort(key=lambda x: int(x[12:-4]))
    elo_result_file = elo_result_files[-1]

    leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
    leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
    leaderboard_table_file = leaderboard_table_files[-1]

    demo = build_demo(elo_result_file, leaderboard_table_file)
    demo.launch(show_api=False)