Spaces:
Paused
Paused
ff_li
commited on
Commit
·
e7de191
1
Parent(s):
f67d239
oai
Browse files- agent/llm/__init__.py +1 -1
- agent/llm/{qwen_oai.py → oai.py} +1 -1
- agent/llm/qwen_dashscope.py +0 -86
- agent/llm/qwen_oai_bak.py +0 -527
- assistant_server.py +2 -2
- workstation_server.py +2 -2
agent/llm/__init__.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
from .base import BaseChatModel
|
| 2 |
from .qwen_dashscope import QwenChatAtDS
|
| 3 |
-
from .
|
| 4 |
|
|
|
|
| 1 |
from .base import BaseChatModel
|
| 2 |
from .qwen_dashscope import QwenChatAtDS
|
| 3 |
+
from .oai import ChatAsOAI
|
| 4 |
|
agent/llm/{qwen_oai.py → oai.py}
RENAMED
|
@@ -5,7 +5,7 @@ from agent.llm.base import BaseChatModel
|
|
| 5 |
from typing import Dict, List, Literal, Optional, Union
|
| 6 |
|
| 7 |
|
| 8 |
-
class
|
| 9 |
|
| 10 |
def __init__(self, model: str):
|
| 11 |
super().__init__()
|
|
|
|
| 5 |
from typing import Dict, List, Literal, Optional, Union
|
| 6 |
|
| 7 |
|
| 8 |
+
class ChatAsOAI(BaseChatModel):
|
| 9 |
|
| 10 |
def __init__(self, model: str):
|
| 11 |
super().__init__()
|
agent/llm/qwen_dashscope.py
DELETED
|
@@ -1,86 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from http import HTTPStatus
|
| 3 |
-
from typing import Dict, Iterator, List, Optional
|
| 4 |
-
|
| 5 |
-
import dashscope
|
| 6 |
-
|
| 7 |
-
from agent.llm.base import BaseChatModel
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
class QwenChatAtDS(BaseChatModel):
|
| 11 |
-
|
| 12 |
-
def __init__(self, model: str, api_key: str):
|
| 13 |
-
super().__init__()
|
| 14 |
-
self.model = model
|
| 15 |
-
dashscope.api_key = api_key.strip() or os.getenv('DASHSCOPE_API_KEY',
|
| 16 |
-
default='')
|
| 17 |
-
assert dashscope.api_key, 'DASHSCOPE_API_KEY is required.'
|
| 18 |
-
|
| 19 |
-
def _chat_stream(
|
| 20 |
-
self,
|
| 21 |
-
messages: List[Dict],
|
| 22 |
-
stop: Optional[List[str]] = None,
|
| 23 |
-
) -> Iterator[str]:
|
| 24 |
-
stop = stop or []
|
| 25 |
-
response = dashscope.Generation.call(
|
| 26 |
-
self.model,
|
| 27 |
-
messages=messages, # noqa
|
| 28 |
-
stop_words=[{
|
| 29 |
-
'stop_str': word,
|
| 30 |
-
'mode': 'exclude'
|
| 31 |
-
} for word in stop],
|
| 32 |
-
top_p=0.8,
|
| 33 |
-
result_format='message',
|
| 34 |
-
stream=True,
|
| 35 |
-
)
|
| 36 |
-
last_len = 0
|
| 37 |
-
delay_len = 5
|
| 38 |
-
in_delay = False
|
| 39 |
-
text = ''
|
| 40 |
-
for trunk in response:
|
| 41 |
-
if trunk.status_code == HTTPStatus.OK:
|
| 42 |
-
text = trunk.output.choices[0].message.content
|
| 43 |
-
if (len(text) - last_len) <= delay_len:
|
| 44 |
-
in_delay = True
|
| 45 |
-
continue
|
| 46 |
-
else:
|
| 47 |
-
in_delay = False
|
| 48 |
-
real_text = text[:-delay_len]
|
| 49 |
-
now_rsp = real_text[last_len:]
|
| 50 |
-
yield now_rsp
|
| 51 |
-
last_len = len(real_text)
|
| 52 |
-
else:
|
| 53 |
-
err = '\nError code: %s. Error message: %s' % (trunk.code,
|
| 54 |
-
trunk.message)
|
| 55 |
-
if trunk.code == 'DataInspectionFailed':
|
| 56 |
-
err += '\n错误码: 数据检查失败。错误信息: 输入数据可能包含不适当的内容。'
|
| 57 |
-
text = ''
|
| 58 |
-
yield f'{err}'
|
| 59 |
-
if text and (in_delay or (last_len != len(text))):
|
| 60 |
-
yield text[last_len:]
|
| 61 |
-
|
| 62 |
-
def _chat_no_stream(
|
| 63 |
-
self,
|
| 64 |
-
messages: List[Dict],
|
| 65 |
-
stop: Optional[List[str]] = None,
|
| 66 |
-
) -> str:
|
| 67 |
-
stop = stop or []
|
| 68 |
-
response = dashscope.Generation.call(
|
| 69 |
-
self.model,
|
| 70 |
-
messages=messages, # noqa
|
| 71 |
-
result_format='message',
|
| 72 |
-
stream=False,
|
| 73 |
-
stop_words=[{
|
| 74 |
-
'stop_str': word,
|
| 75 |
-
'mode': 'exclude'
|
| 76 |
-
} for word in stop],
|
| 77 |
-
top_p=0.8,
|
| 78 |
-
)
|
| 79 |
-
if response.status_code == HTTPStatus.OK:
|
| 80 |
-
return response.output.choices[0].message.content
|
| 81 |
-
else:
|
| 82 |
-
err = 'Error code: %s, error message: %s' % (
|
| 83 |
-
response.code,
|
| 84 |
-
response.message,
|
| 85 |
-
)
|
| 86 |
-
return err
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
agent/llm/qwen_oai_bak.py
DELETED
|
@@ -1,527 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from typing import Dict, Iterator, List, Optional
|
| 3 |
-
|
| 4 |
-
import openai
|
| 5 |
-
|
| 6 |
-
from agent.llm.base import BaseChatModel
|
| 7 |
-
|
| 8 |
-
import re
|
| 9 |
-
import copy
|
| 10 |
-
import json
|
| 11 |
-
import time
|
| 12 |
-
from contextlib import asynccontextmanager
|
| 13 |
-
from typing import Dict, List, Literal, Optional, Union
|
| 14 |
-
import torch
|
| 15 |
-
from pydantic import BaseModel, Field
|
| 16 |
-
from sse_starlette.sse import EventSourceResponse
|
| 17 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 18 |
-
from transformers.generation import GenerationConfig
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def _gc(forced: bool = False, disable_gc: bool = True):
|
| 22 |
-
if disable_gc and not forced:
|
| 23 |
-
return
|
| 24 |
-
|
| 25 |
-
import gc
|
| 26 |
-
gc.collect()
|
| 27 |
-
if torch.cuda.is_available():
|
| 28 |
-
torch.cuda.empty_cache()
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class ChatMessage(BaseModel):
|
| 32 |
-
role: Literal["user", "assistant", "system", "function"]
|
| 33 |
-
content: Optional[str]
|
| 34 |
-
function_call: Optional[Dict] = None
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
class DeltaMessage(BaseModel):
|
| 38 |
-
role: Optional[Literal["user", "assistant", "system"]] = None
|
| 39 |
-
content: Optional[str] = None
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class ChatCompletionRequest(BaseModel):
|
| 43 |
-
model: str
|
| 44 |
-
messages: List[ChatMessage]
|
| 45 |
-
functions: Optional[List[Dict]] = None
|
| 46 |
-
temperature: Optional[float] = None
|
| 47 |
-
top_p: Optional[float] = None
|
| 48 |
-
max_length: Optional[int] = None
|
| 49 |
-
stream: Optional[bool] = False
|
| 50 |
-
stop: Optional[List[str]] = None
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
class ChatCompletionResponseChoice(BaseModel):
|
| 54 |
-
index: int
|
| 55 |
-
message: ChatMessage
|
| 56 |
-
finish_reason: Literal["stop", "length", "function_call"]
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
class ChatCompletionResponseStreamChoice(BaseModel):
|
| 60 |
-
index: int
|
| 61 |
-
delta: DeltaMessage
|
| 62 |
-
finish_reason: Optional[Literal["stop", "length"]]
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
class ChatCompletionResponse(BaseModel):
|
| 66 |
-
model: str
|
| 67 |
-
object: Literal["chat.completion", "chat.completion.chunk"]
|
| 68 |
-
choices: List[
|
| 69 |
-
Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]
|
| 70 |
-
]
|
| 71 |
-
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# To work around that unpleasant leading-\n tokenization issue!
|
| 75 |
-
def add_extra_stop_words(stop_words):
|
| 76 |
-
if stop_words:
|
| 77 |
-
_stop_words = []
|
| 78 |
-
_stop_words.extend(stop_words)
|
| 79 |
-
for x in stop_words:
|
| 80 |
-
s = x.lstrip("\n")
|
| 81 |
-
if s and (s not in _stop_words):
|
| 82 |
-
_stop_words.append(s)
|
| 83 |
-
return _stop_words
|
| 84 |
-
return stop_words
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def trim_stop_words(response, stop_words):
|
| 88 |
-
if stop_words:
|
| 89 |
-
for stop in stop_words:
|
| 90 |
-
idx = response.find(stop)
|
| 91 |
-
if idx != -1:
|
| 92 |
-
response = response[:idx]
|
| 93 |
-
return response
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}"""
|
| 97 |
-
|
| 98 |
-
REACT_INSTRUCTION = """Answer the following questions as best you can. You have access to the following APIs:
|
| 99 |
-
|
| 100 |
-
{tools_text}
|
| 101 |
-
|
| 102 |
-
Use the following format:
|
| 103 |
-
|
| 104 |
-
Question: the input question you must answer
|
| 105 |
-
Thought: you should always think about what to do
|
| 106 |
-
Action: the action to take, should be one of [{tools_name_text}]
|
| 107 |
-
Action Input: the input to the action
|
| 108 |
-
Observation: the result of the action
|
| 109 |
-
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
|
| 110 |
-
Thought: I now know the final answer
|
| 111 |
-
Final Answer: the final answer to the original input question
|
| 112 |
-
|
| 113 |
-
Begin!"""
|
| 114 |
-
|
| 115 |
-
_TEXT_COMPLETION_CMD = object()
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
#
|
| 119 |
-
# Temporarily, the system role does not work as expected.
|
| 120 |
-
# We advise that you write the setups for role-play in your query,
|
| 121 |
-
# i.e., use the user role instead of the system role.
|
| 122 |
-
#
|
| 123 |
-
# TODO: Use real system role when the model is ready.
|
| 124 |
-
#
|
| 125 |
-
def parse_messages(messages, functions):
|
| 126 |
-
if all(m.role != "user" for m in messages):
|
| 127 |
-
raise Exception(f"Invalid request: Expecting at least one user message.", )
|
| 128 |
-
messages = copy.deepcopy(messages)
|
| 129 |
-
default_system = "You are a helpful assistant."
|
| 130 |
-
system = ""
|
| 131 |
-
if messages[0].role == "system":
|
| 132 |
-
system = messages.pop(0).content.lstrip("\n").rstrip()
|
| 133 |
-
if system == default_system:
|
| 134 |
-
system = ""
|
| 135 |
-
|
| 136 |
-
if functions:
|
| 137 |
-
tools_text = []
|
| 138 |
-
tools_name_text = []
|
| 139 |
-
for func_info in functions:
|
| 140 |
-
name = func_info.get("name", "")
|
| 141 |
-
name_m = func_info.get("name_for_model", name)
|
| 142 |
-
name_h = func_info.get("name_for_human", name)
|
| 143 |
-
desc = func_info.get("description", "")
|
| 144 |
-
desc_m = func_info.get("description_for_model", desc)
|
| 145 |
-
tool = TOOL_DESC.format(
|
| 146 |
-
name_for_model=name_m,
|
| 147 |
-
name_for_human=name_h,
|
| 148 |
-
# Hint: You can add the following format requirements in description:
|
| 149 |
-
# "Format the arguments as a JSON object."
|
| 150 |
-
# "Enclose the code within triple backticks (`) at the beginning and end of the code."
|
| 151 |
-
description_for_model=desc_m,
|
| 152 |
-
parameters=json.dumps(func_info["parameters"], ensure_ascii=False),
|
| 153 |
-
)
|
| 154 |
-
tools_text.append(tool)
|
| 155 |
-
tools_name_text.append(name_m)
|
| 156 |
-
tools_text = "\n\n".join(tools_text)
|
| 157 |
-
tools_name_text = ", ".join(tools_name_text)
|
| 158 |
-
system += "\n\n" + REACT_INSTRUCTION.format(
|
| 159 |
-
tools_text=tools_text,
|
| 160 |
-
tools_name_text=tools_name_text,
|
| 161 |
-
)
|
| 162 |
-
system = system.lstrip("\n").rstrip()
|
| 163 |
-
|
| 164 |
-
dummy_thought = {
|
| 165 |
-
"en": "\nThought: I now know the final answer.\nFinal answer: ",
|
| 166 |
-
"zh": "\nThought: 我会作答了。\nFinal answer: ",
|
| 167 |
-
}
|
| 168 |
-
|
| 169 |
-
_messages = messages
|
| 170 |
-
messages = []
|
| 171 |
-
for m_idx, m in enumerate(_messages):
|
| 172 |
-
role, content, func_call = m.role, m.content, m.function_call
|
| 173 |
-
if content:
|
| 174 |
-
content = content.lstrip("\n").rstrip()
|
| 175 |
-
if role == "function":
|
| 176 |
-
if (len(messages) == 0) or (messages[-1].role != "assistant"):
|
| 177 |
-
raise Exception("Invalid request: Expecting role assistant before role function.")
|
| 178 |
-
messages[-1].content += f"\nObservation: {content}"
|
| 179 |
-
if m_idx == len(_messages) - 1:
|
| 180 |
-
messages[-1].content += "\nThought:"
|
| 181 |
-
elif role == "assistant":
|
| 182 |
-
if len(messages) == 0:
|
| 183 |
-
raise Exception(f"Invalid request: Expecting role user before role assistant.")
|
| 184 |
-
last_msg = messages[-1].content
|
| 185 |
-
last_msg_has_zh = len(re.findall(r"[\u4e00-\u9fff]+", last_msg)) > 0
|
| 186 |
-
if func_call is None:
|
| 187 |
-
if functions:
|
| 188 |
-
content = dummy_thought["zh" if last_msg_has_zh else "en"] + content
|
| 189 |
-
else:
|
| 190 |
-
f_name, f_args = func_call["name"], func_call["arguments"]
|
| 191 |
-
if not content:
|
| 192 |
-
if last_msg_has_zh:
|
| 193 |
-
content = f"Thought: 我可以使用 {f_name} API。"
|
| 194 |
-
else:
|
| 195 |
-
content = f"Thought: I can use {f_name}."
|
| 196 |
-
content = f"\n{content}\nAction: {f_name}\nAction Input: {f_args}"
|
| 197 |
-
if messages[-1].role == "user":
|
| 198 |
-
messages.append(
|
| 199 |
-
ChatMessage(role="assistant", content=content.lstrip("\n").rstrip())
|
| 200 |
-
)
|
| 201 |
-
else:
|
| 202 |
-
messages[-1].content += content
|
| 203 |
-
elif role == "user":
|
| 204 |
-
messages.append(
|
| 205 |
-
ChatMessage(role="user", content=content.lstrip("\n").rstrip())
|
| 206 |
-
)
|
| 207 |
-
else:
|
| 208 |
-
raise Exception(
|
| 209 |
-
f"Invalid request: Incorrect role {role}."
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
query = _TEXT_COMPLETION_CMD
|
| 213 |
-
if messages[-1].role == "user":
|
| 214 |
-
query = messages[-1].content
|
| 215 |
-
messages = messages[:-1]
|
| 216 |
-
|
| 217 |
-
if len(messages) % 2 != 0:
|
| 218 |
-
raise Exception("Invalid request")
|
| 219 |
-
|
| 220 |
-
history = [] # [(Q1, A1), (Q2, A2), ..., (Q_last_turn, A_last_turn)]
|
| 221 |
-
for i in range(0, len(messages), 2):
|
| 222 |
-
if messages[i].role == "user" and messages[i + 1].role == "assistant":
|
| 223 |
-
usr_msg = messages[i].content.lstrip("\n").rstrip()
|
| 224 |
-
bot_msg = messages[i + 1].content.lstrip("\n").rstrip()
|
| 225 |
-
if system and (i == len(messages) - 2):
|
| 226 |
-
usr_msg = f"{system}\n\nQuestion: {usr_msg}"
|
| 227 |
-
system = ""
|
| 228 |
-
for t in dummy_thought.values():
|
| 229 |
-
t = t.lstrip("\n")
|
| 230 |
-
if bot_msg.startswith(t) and ("\nAction: " in bot_msg):
|
| 231 |
-
bot_msg = bot_msg[len(t):]
|
| 232 |
-
history.append([usr_msg, bot_msg])
|
| 233 |
-
else:
|
| 234 |
-
raise Exception("Invalid request: Expecting exactly one user (or function) role before every assistant role.")
|
| 235 |
-
if system:
|
| 236 |
-
assert query is not _TEXT_COMPLETION_CMD
|
| 237 |
-
query = f"{system}\n\nQuestion: {query}"
|
| 238 |
-
return query, history
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
def parse_response(response):
|
| 242 |
-
func_name, func_args = "", ""
|
| 243 |
-
i = response.rfind("\nAction:")
|
| 244 |
-
j = response.rfind("\nAction Input:")
|
| 245 |
-
k = response.rfind("\nObservation:")
|
| 246 |
-
if 0 <= i < j: # If the text has `Action` and `Action input`,
|
| 247 |
-
if k < j: # but does not contain `Observation`,
|
| 248 |
-
# then it is likely that `Observation` is omitted by the LLM,
|
| 249 |
-
# because the output text may have discarded the stop word.
|
| 250 |
-
response = response.rstrip() + "\nObservation:" # Add it back.
|
| 251 |
-
k = response.rfind("\nObservation:")
|
| 252 |
-
func_name = response[i + len("\nAction:"): j].strip()
|
| 253 |
-
func_args = response[j + len("\nAction Input:"): k].strip()
|
| 254 |
-
if func_name:
|
| 255 |
-
choice_data = ChatCompletionResponseChoice(
|
| 256 |
-
index=0,
|
| 257 |
-
message=ChatMessage(
|
| 258 |
-
role="assistant",
|
| 259 |
-
content=response[:i],
|
| 260 |
-
function_call={"name": func_name, "arguments": func_args},
|
| 261 |
-
),
|
| 262 |
-
finish_reason="function_call",
|
| 263 |
-
)
|
| 264 |
-
return choice_data
|
| 265 |
-
z = response.rfind("\nFinal Answer: ")
|
| 266 |
-
if z >= 0:
|
| 267 |
-
response = response[z + len("\nFinal Answer: "):]
|
| 268 |
-
choice_data = ChatCompletionResponseChoice(
|
| 269 |
-
index=0,
|
| 270 |
-
message=ChatMessage(role="assistant", content=response),
|
| 271 |
-
finish_reason="stop",
|
| 272 |
-
)
|
| 273 |
-
return choice_data
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
# completion mode, not chat mode
|
| 277 |
-
def text_complete_last_message(history, stop_words_ids, gen_kwargs):
|
| 278 |
-
im_start = "<|im_start|>"
|
| 279 |
-
im_end = "<|im_end|>"
|
| 280 |
-
prompt = f"{im_start}system\nYou are a helpful assistant.{im_end}"
|
| 281 |
-
for i, (query, response) in enumerate(history):
|
| 282 |
-
query = query.lstrip("\n").rstrip()
|
| 283 |
-
response = response.lstrip("\n").rstrip()
|
| 284 |
-
prompt += f"\n{im_start}user\n{query}{im_end}"
|
| 285 |
-
prompt += f"\n{im_start}assistant\n{response}{im_end}"
|
| 286 |
-
prompt = prompt[: -len(im_end)]
|
| 287 |
-
|
| 288 |
-
_stop_words_ids = [tokenizer.encode(im_end)]
|
| 289 |
-
if stop_words_ids:
|
| 290 |
-
for s in stop_words_ids:
|
| 291 |
-
_stop_words_ids.append(s)
|
| 292 |
-
stop_words_ids = _stop_words_ids
|
| 293 |
-
|
| 294 |
-
input_ids = torch.tensor([tokenizer.encode(prompt)]).to(qmodel.device)
|
| 295 |
-
output = qmodel.generate(input_ids, stop_words_ids=stop_words_ids, **gen_kwargs).tolist()[0]
|
| 296 |
-
output = tokenizer.decode(output, errors="ignore")
|
| 297 |
-
assert output.startswith(prompt)
|
| 298 |
-
output = output[len(prompt):]
|
| 299 |
-
output = trim_stop_words(output, ["<|endoftext|>", im_end])
|
| 300 |
-
print(f"<completion>\n{prompt}\n<!-- *** -->\n{output}\n</completion>")
|
| 301 |
-
return output
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
def create_chat_completion(request: ChatCompletionRequest, qmodel, tokenizer):
|
| 305 |
-
|
| 306 |
-
gen_kwargs = {}
|
| 307 |
-
if request.temperature is not None:
|
| 308 |
-
if request.temperature < 0.01:
|
| 309 |
-
gen_kwargs['top_k'] = 1 # greedy decoding
|
| 310 |
-
else:
|
| 311 |
-
# Not recommended. Please tune top_p instead.
|
| 312 |
-
gen_kwargs['temperature'] = request.temperature
|
| 313 |
-
if request.top_p is not None:
|
| 314 |
-
gen_kwargs['top_p'] = request.top_p
|
| 315 |
-
|
| 316 |
-
stop_words = add_extra_stop_words(request.stop)
|
| 317 |
-
if request.functions:
|
| 318 |
-
stop_words = stop_words or []
|
| 319 |
-
if "Observation:" not in stop_words:
|
| 320 |
-
stop_words.append("Observation:")
|
| 321 |
-
|
| 322 |
-
query, history = parse_messages(request.messages, request.functions)
|
| 323 |
-
|
| 324 |
-
if request.stream:
|
| 325 |
-
if request.functions:
|
| 326 |
-
raise Exception("Invalid request: Function calling is not yet implemented for stream mode.")
|
| 327 |
-
generate = predict(query, history, request.model, stop_words, gen_kwargs, qmodel, tokenizer)
|
| 328 |
-
return generate
|
| 329 |
-
# return EventSourceResponse(generate, media_type="text/event-stream")
|
| 330 |
-
|
| 331 |
-
stop_words_ids = [tokenizer.encode(s) for s in stop_words] if stop_words else None
|
| 332 |
-
if query is _TEXT_COMPLETION_CMD:
|
| 333 |
-
response = text_complete_last_message(history, stop_words_ids=stop_words_ids, gen_kwargs=gen_kwargs)
|
| 334 |
-
else:
|
| 335 |
-
response, _ = qmodel.chat(
|
| 336 |
-
tokenizer,
|
| 337 |
-
query,
|
| 338 |
-
history=history,
|
| 339 |
-
stop_words_ids=stop_words_ids,
|
| 340 |
-
**gen_kwargs
|
| 341 |
-
)
|
| 342 |
-
print(f"<chat>\n{history}\n{query}\n<!-- *** -->\n{response}\n</chat>")
|
| 343 |
-
_gc()
|
| 344 |
-
|
| 345 |
-
response = trim_stop_words(response, stop_words)
|
| 346 |
-
if request.functions:
|
| 347 |
-
choice_data = parse_response(response)
|
| 348 |
-
else:
|
| 349 |
-
choice_data = ChatCompletionResponseChoice(
|
| 350 |
-
index=0,
|
| 351 |
-
message=ChatMessage(role="assistant", content=response),
|
| 352 |
-
finish_reason="stop",
|
| 353 |
-
)
|
| 354 |
-
return ChatCompletionResponse(
|
| 355 |
-
model=request.model, choices=[choice_data], object="chat.completion"
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
def _dump_json(data: BaseModel, *args, **kwargs) -> str:
|
| 360 |
-
try:
|
| 361 |
-
return data.model_dump_json(*args, **kwargs)
|
| 362 |
-
except AttributeError: # pydantic<2.0.0
|
| 363 |
-
return data.json(*args, **kwargs) # noqa
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
def predict(
|
| 367 |
-
query: str, history: List[List[str]], model_id: str, stop_words: List[str], gen_kwargs: Dict, qmodel, tokenizer
|
| 368 |
-
):
|
| 369 |
-
choice_data = ChatCompletionResponseStreamChoice(
|
| 370 |
-
index=0, delta=DeltaMessage(role="assistant"), finish_reason=None
|
| 371 |
-
)
|
| 372 |
-
chunk = ChatCompletionResponse(
|
| 373 |
-
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
| 374 |
-
)
|
| 375 |
-
# yield "{}".format(_dump_json(chunk, exclude_unset=True))
|
| 376 |
-
yield chunk
|
| 377 |
-
|
| 378 |
-
current_length = 0
|
| 379 |
-
stop_words_ids = [tokenizer.encode(s) for s in stop_words] if stop_words else None
|
| 380 |
-
if stop_words:
|
| 381 |
-
# TODO: It's a little bit tricky to trim stop words in the stream mode.
|
| 382 |
-
raise Exception("Invalid request: custom stop words are not yet supported for stream mode.", )
|
| 383 |
-
response_generator = qmodel.chat_stream(
|
| 384 |
-
tokenizer, query, history=history, stop_words_ids=stop_words_ids, **gen_kwargs
|
| 385 |
-
)
|
| 386 |
-
for new_response in response_generator:
|
| 387 |
-
if len(new_response) == current_length:
|
| 388 |
-
continue
|
| 389 |
-
|
| 390 |
-
new_text = new_response[current_length:]
|
| 391 |
-
current_length = len(new_response)
|
| 392 |
-
|
| 393 |
-
choice_data = ChatCompletionResponseStreamChoice(
|
| 394 |
-
index=0, delta=DeltaMessage(content=new_text), finish_reason=None
|
| 395 |
-
)
|
| 396 |
-
chunk = ChatCompletionResponse(
|
| 397 |
-
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
| 398 |
-
)
|
| 399 |
-
# yield "{}".format(_dump_json(chunk, exclude_unset=True))
|
| 400 |
-
yield chunk
|
| 401 |
-
|
| 402 |
-
choice_data = ChatCompletionResponseStreamChoice(
|
| 403 |
-
index=0, delta=DeltaMessage(), finish_reason="stop"
|
| 404 |
-
)
|
| 405 |
-
chunk = ChatCompletionResponse(
|
| 406 |
-
model=model_id, choices=[choice_data], object="chat.completion.chunk"
|
| 407 |
-
)
|
| 408 |
-
# yield "{}".format(_dump_json(chunk, exclude_unset=True))
|
| 409 |
-
yield chunk
|
| 410 |
-
# yield "[DONE]"
|
| 411 |
-
|
| 412 |
-
_gc()
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
class QwenChatAsOAI(BaseChatModel):
|
| 416 |
-
|
| 417 |
-
def __init__(self, model: str, api_key: str, model_server: str):
|
| 418 |
-
self.model = model
|
| 419 |
-
super().__init__()
|
| 420 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 421 |
-
self.model,
|
| 422 |
-
trust_remote_code=True,
|
| 423 |
-
resume_download=True,
|
| 424 |
-
)
|
| 425 |
-
device_map = "cpu"
|
| 426 |
-
# device_map = "auto"
|
| 427 |
-
qmodel = AutoModelForCausalLM.from_pretrained(
|
| 428 |
-
self.model,
|
| 429 |
-
device_map=device_map,
|
| 430 |
-
trust_remote_code=True,
|
| 431 |
-
resume_download=True,
|
| 432 |
-
).eval()
|
| 433 |
-
|
| 434 |
-
qmodel.generation_config = GenerationConfig.from_pretrained(
|
| 435 |
-
self.model,
|
| 436 |
-
trust_remote_code=True,
|
| 437 |
-
resume_download=True,
|
| 438 |
-
)
|
| 439 |
-
self.qmodel = qmodel
|
| 440 |
-
self.tokenizer = tokenizer
|
| 441 |
-
|
| 442 |
-
def _chat_stream(
|
| 443 |
-
self,
|
| 444 |
-
messages: List[Dict],
|
| 445 |
-
stop: Optional[List[str]] = None,
|
| 446 |
-
) -> Iterator[str]:
|
| 447 |
-
_request = ChatCompletionRequest(model=self.model,
|
| 448 |
-
messages=messages,
|
| 449 |
-
stop=stop,
|
| 450 |
-
stream=True)
|
| 451 |
-
response = create_chat_completion(_request, self.qmodel, self.tokenizer)
|
| 452 |
-
# TODO: error handling
|
| 453 |
-
for chunk in response:
|
| 454 |
-
if hasattr(chunk.choices[0].delta, 'content'):
|
| 455 |
-
yield chunk.choices[0].delta.content
|
| 456 |
-
|
| 457 |
-
def _chat_no_stream(
|
| 458 |
-
self,
|
| 459 |
-
messages: List[Dict],
|
| 460 |
-
stop: Optional[List[str]] = None,
|
| 461 |
-
) -> str:
|
| 462 |
-
_request = ChatCompletionRequest(model=self.model, messages=messages, stop=stop, stream=False)
|
| 463 |
-
response = create_chat_completion(_request, self.qmodel, self.tokenizer)
|
| 464 |
-
# TODO: error handling
|
| 465 |
-
return response.choices[0].message.content
|
| 466 |
-
|
| 467 |
-
def chat_with_functions(self,
|
| 468 |
-
messages: List[Dict],
|
| 469 |
-
functions: Optional[List[Dict]] = None) -> Dict:
|
| 470 |
-
if functions:
|
| 471 |
-
_request = ChatCompletionRequest(model=self.model, messages=messages, functions=functions)
|
| 472 |
-
response = create_chat_completion(_request, self.qmodel, self.tokenizer)
|
| 473 |
-
else:
|
| 474 |
-
_request = ChatCompletionRequest(model=self.model, messages=messages)
|
| 475 |
-
response = create_chat_completion(_request, self.qmodel, self.tokenizer)
|
| 476 |
-
# TODO: error handling
|
| 477 |
-
return response.choices[0].message.model_dump()
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
class QwenChatAsOAI1(BaseChatModel):
|
| 481 |
-
|
| 482 |
-
def __init__(self, model: str, api_key: str, model_server: str):
|
| 483 |
-
super().__init__()
|
| 484 |
-
if model_server.strip().lower() != 'openai':
|
| 485 |
-
openai.api_base = model_server
|
| 486 |
-
openai.api_key = api_key.strip() or os.getenv('OPENAI_API_KEY',
|
| 487 |
-
default='EMPTY')
|
| 488 |
-
self.model = model
|
| 489 |
-
|
| 490 |
-
def _chat_stream(
|
| 491 |
-
self,
|
| 492 |
-
messages: List[Dict],
|
| 493 |
-
stop: Optional[List[str]] = None,
|
| 494 |
-
) -> Iterator[str]:
|
| 495 |
-
response = openai.ChatCompletion.create(model=self.model,
|
| 496 |
-
messages=messages,
|
| 497 |
-
stop=stop,
|
| 498 |
-
stream=True)
|
| 499 |
-
# TODO: error handling
|
| 500 |
-
for chunk in response:
|
| 501 |
-
if hasattr(chunk.choices[0].delta, 'content'):
|
| 502 |
-
yield chunk.choices[0].delta.content
|
| 503 |
-
|
| 504 |
-
def _chat_no_stream(
|
| 505 |
-
self,
|
| 506 |
-
messages: List[Dict],
|
| 507 |
-
stop: Optional[List[str]] = None,
|
| 508 |
-
) -> str:
|
| 509 |
-
response = openai.ChatCompletion.create(model=self.model,
|
| 510 |
-
messages=messages,
|
| 511 |
-
stop=stop,
|
| 512 |
-
stream=False)
|
| 513 |
-
# TODO: error handling
|
| 514 |
-
return response.choices[0].message.content
|
| 515 |
-
|
| 516 |
-
def chat_with_functions(self,
|
| 517 |
-
messages: List[Dict],
|
| 518 |
-
functions: Optional[List[Dict]] = None) -> Dict:
|
| 519 |
-
if functions:
|
| 520 |
-
response = openai.ChatCompletion.create(model=self.model,
|
| 521 |
-
messages=messages,
|
| 522 |
-
functions=functions)
|
| 523 |
-
else:
|
| 524 |
-
response = openai.ChatCompletion.create(model=self.model,
|
| 525 |
-
messages=messages)
|
| 526 |
-
# TODO: error handling
|
| 527 |
-
return response.choices[0].message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assistant_server.py
CHANGED
|
@@ -4,11 +4,11 @@ from pathlib import Path
|
|
| 4 |
import gradio as gr
|
| 5 |
import jsonlines
|
| 6 |
from agent.actions import RetrievalQA
|
| 7 |
-
from agent.llm import
|
| 8 |
from agent.memory import Memory
|
| 9 |
from utils import service, cache_file, max_ref_token
|
| 10 |
|
| 11 |
-
llm =
|
| 12 |
mem = Memory(llm=llm, stream=False)
|
| 13 |
|
| 14 |
with open('css/main.css', 'r') as f:
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import jsonlines
|
| 6 |
from agent.actions import RetrievalQA
|
| 7 |
+
from agent.llm import ChatAsOAI
|
| 8 |
from agent.memory import Memory
|
| 9 |
from utils import service, cache_file, max_ref_token
|
| 10 |
|
| 11 |
+
llm = ChatAsOAI(model="gpt-3.5-turbo")
|
| 12 |
mem = Memory(llm=llm, stream=False)
|
| 13 |
|
| 14 |
with open('css/main.css', 'r') as f:
|
workstation_server.py
CHANGED
|
@@ -7,7 +7,7 @@ import gradio as gr
|
|
| 7 |
import jsonlines
|
| 8 |
from agent.actions import (ContinueWriting, ReAct, RetrievalQA, WriteFromScratch)
|
| 9 |
from agent.actions.function_calling import FunctionCalling
|
| 10 |
-
from agent.llm import
|
| 11 |
from agent.log import logger
|
| 12 |
from agent.memory import Memory
|
| 13 |
from agent.tools import call_plugin, list_of_all_functions
|
|
@@ -15,7 +15,7 @@ from agent.utils.utils import (format_answer, get_last_one_line_context,
|
|
| 15 |
has_chinese_chars, save_text_to_file)
|
| 16 |
from utils import service, extract_and_cache_document, code_interpreter_ws, cache_root, max_ref_token, max_days, download_root
|
| 17 |
|
| 18 |
-
llm =
|
| 19 |
|
| 20 |
mem = Memory(llm=llm, stream=False)
|
| 21 |
|
|
|
|
| 7 |
import jsonlines
|
| 8 |
from agent.actions import (ContinueWriting, ReAct, RetrievalQA, WriteFromScratch)
|
| 9 |
from agent.actions.function_calling import FunctionCalling
|
| 10 |
+
from agent.llm import ChatAsOAI
|
| 11 |
from agent.log import logger
|
| 12 |
from agent.memory import Memory
|
| 13 |
from agent.tools import call_plugin, list_of_all_functions
|
|
|
|
| 15 |
has_chinese_chars, save_text_to_file)
|
| 16 |
from utils import service, extract_and_cache_document, code_interpreter_ws, cache_root, max_ref_token, max_days, download_root
|
| 17 |
|
| 18 |
+
llm = ChatAsOAI(model="gpt-3.5-turbo")
|
| 19 |
|
| 20 |
mem = Memory(llm=llm, stream=False)
|
| 21 |
|