Spaces:
Runtime error
Runtime error
| from typing import TypedDict, Annotated, List | |
| from typing_extensions import List, TypedDict | |
| from dotenv import load_dotenv | |
| import chainlit as cl | |
| import operator | |
| from langchain.prompts import ChatPromptTemplate | |
| from langchain.retrievers.contextual_compression import ContextualCompressionRetriever | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_cohere import CohereRerank | |
| from langchain_community.document_loaders import DirectoryLoader | |
| from langchain_community.tools.arxiv.tool import ArxivQueryRun | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| from langchain_core.documents import Document | |
| from langchain_core.messages import BaseMessage, HumanMessage | |
| from langchain_core.tools import tool | |
| from langchain_openai import ChatOpenAI, OpenAIEmbeddings | |
| from langchain_qdrant import QdrantVectorStore | |
| from langgraph.graph import START, StateGraph, END | |
| from langgraph.graph.message import add_messages | |
| from langgraph.prebuilt import ToolNode | |
| from qdrant_client import QdrantClient | |
| from qdrant_client.http.models import Distance, VectorParams | |
| load_dotenv() | |
| path = "data/" | |
| loader = DirectoryLoader(path, glob="*.html") | |
| docs = loader.load() | |
| tavily_tool = TavilySearchResults(max_results=5) | |
| arxiv_tool = ArxivQueryRun() | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=750, chunk_overlap=100) | |
| split_documents = text_splitter.split_documents(docs) | |
| embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
| client = QdrantClient(":memory:") | |
| client.create_collection( | |
| collection_name="ai_across_years", | |
| vectors_config=VectorParams(size=1536, distance=Distance.COSINE), | |
| ) | |
| vector_store = QdrantVectorStore( | |
| client=client, | |
| collection_name="ai_across_years", | |
| embedding=embeddings, | |
| ) | |
| _ = vector_store.add_documents(documents=split_documents) | |
| retriever = vector_store.as_retriever(search_kwargs={"k": 5}) | |
| def retrieve(state): | |
| retrieved_docs = retriever.invoke(state["question"]) | |
| return {"context" : retrieved_docs} | |
| RAG_PROMPT = """\ | |
| You are a helpful assistant who answers questions based on provided context. You must only use the provided context, and cannot use your own knowledge. | |
| ### Question | |
| {question} | |
| ### Context | |
| {context} | |
| """ | |
| rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
| llm = ChatOpenAI(model="gpt-4o-mini") | |
| def generate(state): | |
| docs_content = "\n\n".join(doc.page_content for doc in state["context"]) | |
| messages = rag_prompt.format_messages(question=state["question"], context=docs_content) | |
| response = llm.invoke(messages) | |
| return {"response" : response.content} | |
| from langgraph.graph import START, StateGraph | |
| from typing_extensions import List, TypedDict | |
| from langchain_core.documents import Document | |
| class State(TypedDict): | |
| question: str | |
| context: List[Document] | |
| response: str | |
| graph_builder = StateGraph(State).add_sequence([retrieve, generate]) | |
| graph_builder.add_edge(START, "retrieve") | |
| graph = graph_builder.compile() | |
| def ai_rag_tool(question: str) -> str: | |
| """Useful for when you need to answer questions about artificial intelligence. Input should be a fully formed question.""" | |
| response = graph.invoke({"question" : question}) | |
| return { | |
| "messages": [HumanMessage(content=response["response"])], | |
| "context": response["context"] | |
| } | |
| tool_belt = [ | |
| tavily_tool, | |
| arxiv_tool, | |
| ai_rag_tool | |
| ] | |
| model = ChatOpenAI(model="gpt-4o", temperature=0) | |
| model = model.bind_tools(tool_belt) | |
| class AgentState(TypedDict): | |
| messages: Annotated[list, add_messages] | |
| context: List[Document] | |
| tool_node = ToolNode(tool_belt) | |
| uncompiled_graph = StateGraph(AgentState) | |
| def call_model(state): | |
| messages = state["messages"] | |
| response = model.invoke(messages) | |
| return { | |
| "messages": [response], | |
| "context": state.get("context", []) | |
| } | |
| uncompiled_graph.add_node("agent", call_model) | |
| uncompiled_graph.add_node("action", tool_node) | |
| uncompiled_graph.set_entry_point("agent") | |
| def should_continue(state): | |
| last_message = state["messages"][-1] | |
| if last_message.tool_calls: | |
| return "action" | |
| return END | |
| uncompiled_graph.add_conditional_edges( | |
| "agent", | |
| should_continue | |
| ) | |
| uncompiled_graph.add_edge("action", "agent") | |
| compiled_graph = uncompiled_graph.compile() | |
| async def start(): | |
| cl.user_session.set("graph", compiled_graph) | |
| async def handle(message: cl.Message): | |
| graph = cl.user_session.get("graph") | |
| state = {"messages" : [HumanMessage(content=message.content)]} | |
| response = await graph.ainvoke(state) | |
| await cl.Message(content=response["messages"][-1].content).send() |