Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -63,42 +63,11 @@ leaderboard_df = original_df.copy()
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
| 66 |
-
# def update_table(
|
| 67 |
-
# hidden_df: pd.DataFrame,
|
| 68 |
-
# columns: list,
|
| 69 |
-
# type_query: list,
|
| 70 |
-
# precision_query: str,
|
| 71 |
-
# size_query: list,
|
| 72 |
-
# add_special_tokens_query: list,
|
| 73 |
-
# num_few_shots_query: list,
|
| 74 |
-
# show_deleted: bool,
|
| 75 |
-
# show_merges: bool,
|
| 76 |
-
# show_flagged: bool,
|
| 77 |
-
# query: str,
|
| 78 |
-
# ):
|
| 79 |
-
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 80 |
-
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 81 |
-
|
| 82 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 83 |
-
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 84 |
-
|
| 85 |
-
# filtered_df = filter_queries(query, filtered_df)
|
| 86 |
-
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 87 |
-
|
| 88 |
-
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 89 |
-
# print("Filtered dataframe head:")
|
| 90 |
-
# print(filtered_df.head())
|
| 91 |
-
|
| 92 |
-
# df = select_columns(filtered_df, columns)
|
| 93 |
-
# print(f"Final df shape: {df.shape}")
|
| 94 |
-
# print("Final dataframe head:")
|
| 95 |
-
# print(df.head())
|
| 96 |
-
# return df
|
| 97 |
def update_table(
|
| 98 |
hidden_df: pd.DataFrame,
|
| 99 |
columns: list,
|
| 100 |
type_query: list,
|
| 101 |
-
precision_query:
|
| 102 |
size_query: list,
|
| 103 |
add_special_tokens_query: list,
|
| 104 |
num_few_shots_query: list,
|
|
@@ -106,17 +75,24 @@ def update_table(
|
|
| 106 |
show_merges: bool,
|
| 107 |
show_flagged: bool,
|
| 108 |
query: str,
|
| 109 |
-
architecture_query: list,
|
| 110 |
-
license_query: list
|
| 111 |
):
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
|
|
|
| 120 |
return df
|
| 121 |
|
| 122 |
|
|
@@ -129,23 +105,16 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
| 129 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 130 |
|
| 131 |
|
| 132 |
-
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 133 |
-
# always_here_cols = [
|
| 134 |
-
# AutoEvalColumn.model_type_symbol.name,
|
| 135 |
-
# AutoEvalColumn.model.name,
|
| 136 |
-
# ]
|
| 137 |
-
# # We use COLS to maintain sorting
|
| 138 |
-
# filtered_df = df[
|
| 139 |
-
# always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
| 140 |
-
# ]
|
| 141 |
-
# return filtered_df
|
| 142 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 143 |
always_here_cols = [
|
| 144 |
AutoEvalColumn.model_type_symbol.name,
|
| 145 |
AutoEvalColumn.model.name,
|
| 146 |
]
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
|
| 151 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
@@ -168,58 +137,17 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 168 |
return filtered_df
|
| 169 |
|
| 170 |
|
| 171 |
-
# def filter_models(
|
| 172 |
-
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 173 |
-
# ) -> pd.DataFrame:
|
| 174 |
-
# print(f"Initial df shape: {df.shape}")
|
| 175 |
-
# print(f"Initial df content:\n{df}")
|
| 176 |
-
|
| 177 |
-
# filtered_df = df
|
| 178 |
-
|
| 179 |
-
# # Model Type フィルタリング
|
| 180 |
-
# type_emoji = [t.split()[0] for t in type_query]
|
| 181 |
-
# filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
|
| 182 |
-
# print(f"After type filter: {filtered_df.shape}")
|
| 183 |
-
|
| 184 |
-
# # Precision フィルタリング
|
| 185 |
-
# filtered_df = filtered_df[filtered_df['Precision'].isin(precision_query + ['Unknown', '?'])]
|
| 186 |
-
# print(f"After precision filter: {filtered_df.shape}")
|
| 187 |
-
|
| 188 |
-
# # Model Size フィルタリング
|
| 189 |
-
# if 'Unknown' in size_query:
|
| 190 |
-
# size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
| 191 |
-
# else:
|
| 192 |
-
# size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
|
| 193 |
-
# filtered_df = filtered_df[size_mask]
|
| 194 |
-
# print(f"After size filter: {filtered_df.shape}")
|
| 195 |
-
|
| 196 |
-
# # Add Special Tokens フィルタリング
|
| 197 |
-
# filtered_df = filtered_df[filtered_df['Add Special Tokens'].isin(add_special_tokens_query + ['Unknown', '?'])]
|
| 198 |
-
# print(f"After add_special_tokens filter: {filtered_df.shape}")
|
| 199 |
-
|
| 200 |
-
# # Num Few Shots フィルタリング
|
| 201 |
-
# filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
| 202 |
-
# print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 203 |
-
|
| 204 |
-
# # Show deleted models フィルタリング
|
| 205 |
-
# if not show_deleted:
|
| 206 |
-
# filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|
| 207 |
-
# print(f"After show_deleted filter: {filtered_df.shape}")
|
| 208 |
-
|
| 209 |
-
# print("Filtered dataframe head:")
|
| 210 |
-
# print(filtered_df.head())
|
| 211 |
-
# return filtered_df
|
| 212 |
def filter_models(
|
| 213 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list,
|
| 214 |
-
add_special_tokens_query: list, num_few_shots_query: list,
|
| 215 |
-
show_deleted: bool, show_merges: bool, show_flagged: bool,
|
| 216 |
-
architecture_query: list, license_query: list
|
| 217 |
) -> pd.DataFrame:
|
| 218 |
print(f"Initial df shape: {df.shape}")
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
# Model Type フィルタリング
|
| 221 |
type_emoji = [t.split()[0] for t in type_query]
|
| 222 |
-
filtered_df =
|
| 223 |
print(f"After type filter: {filtered_df.shape}")
|
| 224 |
|
| 225 |
# Precision フィルタリング
|
|
@@ -230,7 +158,7 @@ def filter_models(
|
|
| 230 |
if 'Unknown' in size_query:
|
| 231 |
size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
| 232 |
else:
|
| 233 |
-
size_mask = filtered_df['#Params (B)'].apply(lambda x: any(
|
| 234 |
filtered_df = filtered_df[size_mask]
|
| 235 |
print(f"After size filter: {filtered_df.shape}")
|
| 236 |
|
|
@@ -242,16 +170,6 @@ def filter_models(
|
|
| 242 |
filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
| 243 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 244 |
|
| 245 |
-
# Architecture フィルタリング
|
| 246 |
-
if architecture_query:
|
| 247 |
-
filtered_df = filtered_df[filtered_df['Architecture'].isin(architecture_query)]
|
| 248 |
-
print(f"After architecture filter: {filtered_df.shape}")
|
| 249 |
-
|
| 250 |
-
# License フィルタリング
|
| 251 |
-
if license_query:
|
| 252 |
-
filtered_df = filtered_df[filtered_df['Hub License'].isin(license_query)]
|
| 253 |
-
print(f"After license filter: {filtered_df.shape}")
|
| 254 |
-
|
| 255 |
# Show deleted models フィルタリング
|
| 256 |
if not show_deleted:
|
| 257 |
filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|
|
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def update_table(
|
| 67 |
hidden_df: pd.DataFrame,
|
| 68 |
columns: list,
|
| 69 |
type_query: list,
|
| 70 |
+
precision_query: str,
|
| 71 |
size_query: list,
|
| 72 |
add_special_tokens_query: list,
|
| 73 |
num_few_shots_query: list,
|
|
|
|
| 75 |
show_merges: bool,
|
| 76 |
show_flagged: bool,
|
| 77 |
query: str,
|
|
|
|
|
|
|
| 78 |
):
|
| 79 |
+
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 80 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 81 |
+
|
| 82 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 83 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 84 |
+
|
| 85 |
filtered_df = filter_queries(query, filtered_df)
|
| 86 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 87 |
+
|
| 88 |
+
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 89 |
+
print("Filtered dataframe head:")
|
| 90 |
+
print(filtered_df.head())
|
| 91 |
+
|
| 92 |
df = select_columns(filtered_df, columns)
|
| 93 |
+
print(f"Final df shape: {df.shape}")
|
| 94 |
+
print("Final dataframe head:")
|
| 95 |
+
print(df.head())
|
| 96 |
return df
|
| 97 |
|
| 98 |
|
|
|
|
| 105 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 106 |
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 109 |
always_here_cols = [
|
| 110 |
AutoEvalColumn.model_type_symbol.name,
|
| 111 |
AutoEvalColumn.model.name,
|
| 112 |
]
|
| 113 |
+
# We use COLS to maintain sorting
|
| 114 |
+
filtered_df = df[
|
| 115 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
| 116 |
+
]
|
| 117 |
+
return filtered_df
|
| 118 |
|
| 119 |
|
| 120 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
|
|
| 137 |
return filtered_df
|
| 138 |
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
def filter_models(
|
| 141 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
|
|
|
|
|
|
|
|
|
| 142 |
) -> pd.DataFrame:
|
| 143 |
print(f"Initial df shape: {df.shape}")
|
| 144 |
+
print(f"Initial df content:\n{df}")
|
| 145 |
+
|
| 146 |
+
filtered_df = df
|
| 147 |
|
| 148 |
# Model Type フィルタリング
|
| 149 |
type_emoji = [t.split()[0] for t in type_query]
|
| 150 |
+
filtered_df = filtered_df[filtered_df['T'].isin(type_emoji)]
|
| 151 |
print(f"After type filter: {filtered_df.shape}")
|
| 152 |
|
| 153 |
# Precision フィルタリング
|
|
|
|
| 158 |
if 'Unknown' in size_query:
|
| 159 |
size_mask = filtered_df['#Params (B)'].isna() | (filtered_df['#Params (B)'] == 0)
|
| 160 |
else:
|
| 161 |
+
size_mask = filtered_df['#Params (B)'].apply(lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != 'Unknown'))
|
| 162 |
filtered_df = filtered_df[size_mask]
|
| 163 |
print(f"After size filter: {filtered_df.shape}")
|
| 164 |
|
|
|
|
| 170 |
filtered_df = filtered_df[filtered_df['Few-shot'].astype(str).isin([str(x) for x in num_few_shots_query] + ['Unknown', '?'])]
|
| 171 |
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
# Show deleted models フィルタリング
|
| 174 |
if not show_deleted:
|
| 175 |
filtered_df = filtered_df[filtered_df['Available on the hub'] == True]
|