Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Clean up
Browse files
app.py
CHANGED
|
@@ -58,7 +58,6 @@ def restart_space() -> None:
|
|
| 58 |
|
| 59 |
# Space initialization
|
| 60 |
try:
|
| 61 |
-
print(EVAL_REQUESTS_PATH)
|
| 62 |
snapshot_download(
|
| 63 |
repo_id=QUEUE_REPO,
|
| 64 |
local_dir=EVAL_REQUESTS_PATH,
|
|
@@ -96,17 +95,12 @@ def filter_models(
|
|
| 96 |
version_query: list[str],
|
| 97 |
vllm_query: list[str],
|
| 98 |
) -> pd.DataFrame:
|
| 99 |
-
print(f"Initial df shape: {df.shape}")
|
| 100 |
-
print(f"Initial df content:\n{df}")
|
| 101 |
-
|
| 102 |
# Filter by model type
|
| 103 |
type_emoji = [t.split()[0] for t in type_query]
|
| 104 |
df = df[df["T"].isin(type_emoji)]
|
| 105 |
-
print(f"After type filter: {df.shape}")
|
| 106 |
|
| 107 |
# Filter by precision
|
| 108 |
df = df[df["Precision"].isin(precision_query)]
|
| 109 |
-
print(f"After precision filter: {df.shape}")
|
| 110 |
|
| 111 |
# Filter by model size
|
| 112 |
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
|
|
@@ -118,26 +112,19 @@ def filter_models(
|
|
| 118 |
if "Unknown" in size_query:
|
| 119 |
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
|
| 120 |
df = df[size_mask]
|
| 121 |
-
print(f"After size filter: {df.shape}")
|
| 122 |
|
| 123 |
# Filter by special tokens setting
|
| 124 |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
|
| 125 |
-
print(f"After add_special_tokens filter: {df.shape}")
|
| 126 |
|
| 127 |
# Filter by number of few-shot examples
|
| 128 |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)]
|
| 129 |
-
print(f"After num_few_shots filter: {df.shape}")
|
| 130 |
|
| 131 |
# Filter by evaluator version
|
| 132 |
df = df[df["llm-jp-eval version"].isin(version_query)]
|
| 133 |
-
print(f"After version filter: {df.shape}")
|
| 134 |
|
| 135 |
# Filter by vLLM version
|
| 136 |
df = df[df["vllm version"].isin(vllm_query)]
|
| 137 |
-
print(f"After vllm version filter: {df.shape}")
|
| 138 |
|
| 139 |
-
print("Filtered dataframe head:")
|
| 140 |
-
print(df.head())
|
| 141 |
return df
|
| 142 |
|
| 143 |
|
|
@@ -190,10 +177,6 @@ def update_table(
|
|
| 190 |
*columns,
|
| 191 |
) -> pd.DataFrame:
|
| 192 |
columns = [item for column in columns for item in column]
|
| 193 |
-
print(
|
| 194 |
-
f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}"
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
filtered_df = filter_models(
|
| 198 |
ORIGINAL_DF,
|
| 199 |
type_query,
|
|
@@ -204,21 +187,9 @@ def update_table(
|
|
| 204 |
version_query,
|
| 205 |
vllm_query,
|
| 206 |
)
|
| 207 |
-
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 208 |
-
|
| 209 |
filtered_df = search_models_by_multiple_names(filtered_df, query)
|
| 210 |
-
print(f"filtered_df shape after search_models_by_multiple_names: {filtered_df.shape}")
|
| 211 |
-
|
| 212 |
-
print(
|
| 213 |
-
f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}"
|
| 214 |
-
)
|
| 215 |
-
print("Filtered dataframe head:")
|
| 216 |
-
print(filtered_df.head())
|
| 217 |
|
| 218 |
df = select_columns(filtered_df, columns)
|
| 219 |
-
print(f"Final df shape: {df.shape}")
|
| 220 |
-
print("Final dataframe head:")
|
| 221 |
-
print(df.head())
|
| 222 |
return df
|
| 223 |
|
| 224 |
|
|
|
|
| 58 |
|
| 59 |
# Space initialization
|
| 60 |
try:
|
|
|
|
| 61 |
snapshot_download(
|
| 62 |
repo_id=QUEUE_REPO,
|
| 63 |
local_dir=EVAL_REQUESTS_PATH,
|
|
|
|
| 95 |
version_query: list[str],
|
| 96 |
vllm_query: list[str],
|
| 97 |
) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
| 98 |
# Filter by model type
|
| 99 |
type_emoji = [t.split()[0] for t in type_query]
|
| 100 |
df = df[df["T"].isin(type_emoji)]
|
|
|
|
| 101 |
|
| 102 |
# Filter by precision
|
| 103 |
df = df[df["Precision"].isin(precision_query)]
|
|
|
|
| 104 |
|
| 105 |
# Filter by model size
|
| 106 |
# Note: When `df` is empty, `size_mask` is empty, and the shape of `df[size_mask]` becomes (0, 0),
|
|
|
|
| 112 |
if "Unknown" in size_query:
|
| 113 |
size_mask |= df["#Params (B)"].isna() | (df["#Params (B)"] == 0)
|
| 114 |
df = df[size_mask]
|
|
|
|
| 115 |
|
| 116 |
# Filter by special tokens setting
|
| 117 |
df = df[df["Add Special Tokens"].isin(add_special_tokens_query)]
|
|
|
|
| 118 |
|
| 119 |
# Filter by number of few-shot examples
|
| 120 |
df = df[df["Few-shot"].astype(str).isin(num_few_shots_query)]
|
|
|
|
| 121 |
|
| 122 |
# Filter by evaluator version
|
| 123 |
df = df[df["llm-jp-eval version"].isin(version_query)]
|
|
|
|
| 124 |
|
| 125 |
# Filter by vLLM version
|
| 126 |
df = df[df["vllm version"].isin(vllm_query)]
|
|
|
|
| 127 |
|
|
|
|
|
|
|
| 128 |
return df
|
| 129 |
|
| 130 |
|
|
|
|
| 177 |
*columns,
|
| 178 |
) -> pd.DataFrame:
|
| 179 |
columns = [item for column in columns for item in column]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
filtered_df = filter_models(
|
| 181 |
ORIGINAL_DF,
|
| 182 |
type_query,
|
|
|
|
| 187 |
version_query,
|
| 188 |
vllm_query,
|
| 189 |
)
|
|
|
|
|
|
|
| 190 |
filtered_df = search_models_by_multiple_names(filtered_df, query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
|
|
|
| 193 |
return df
|
| 194 |
|
| 195 |
|