Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -63,38 +63,6 @@ leaderboard_df = original_df.copy()
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
| 66 |
-
# def update_table(
|
| 67 |
-
# hidden_df: pd.DataFrame,
|
| 68 |
-
# columns: list,
|
| 69 |
-
# type_query: list,
|
| 70 |
-
# precision_query: str,
|
| 71 |
-
# size_query: list,
|
| 72 |
-
# add_special_tokens_query: list,
|
| 73 |
-
# num_few_shots_query: list,
|
| 74 |
-
# show_deleted: bool,
|
| 75 |
-
# show_merges: bool,
|
| 76 |
-
# show_flagged: bool,
|
| 77 |
-
# query: str,
|
| 78 |
-
# ):
|
| 79 |
-
# print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 80 |
-
# print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 81 |
-
|
| 82 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 83 |
-
# print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 84 |
-
|
| 85 |
-
# filtered_df = filter_queries(query, filtered_df)
|
| 86 |
-
# print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 87 |
-
|
| 88 |
-
# print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 89 |
-
# print("Filtered dataframe head:")
|
| 90 |
-
# print(filtered_df.head())
|
| 91 |
-
|
| 92 |
-
# df = select_columns(filtered_df, columns)
|
| 93 |
-
# print(f"Final df shape: {df.shape}")
|
| 94 |
-
# print("Final dataframe head:")
|
| 95 |
-
# print(df.head())
|
| 96 |
-
# return df
|
| 97 |
-
|
| 98 |
def update_table(
|
| 99 |
hidden_df: pd.DataFrame,
|
| 100 |
columns: list,
|
|
@@ -108,9 +76,23 @@ def update_table(
|
|
| 108 |
show_flagged: bool,
|
| 109 |
query: str,
|
| 110 |
):
|
|
|
|
|
|
|
|
|
|
| 111 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
|
|
|
|
| 112 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
|
|
|
| 114 |
return df
|
| 115 |
|
| 116 |
|
|
@@ -123,26 +105,16 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
| 123 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 124 |
|
| 125 |
|
| 126 |
-
# def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 127 |
-
# always_here_cols = [
|
| 128 |
-
# AutoEvalColumn.model_type_symbol.name,
|
| 129 |
-
# AutoEvalColumn.model.name,
|
| 130 |
-
# ]
|
| 131 |
-
# # We use COLS to maintain sorting
|
| 132 |
-
# filtered_df = df[
|
| 133 |
-
# always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
| 134 |
-
# ]
|
| 135 |
-
# return filtered_df
|
| 136 |
-
|
| 137 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 138 |
always_here_cols = [
|
| 139 |
AutoEvalColumn.model_type_symbol.name,
|
| 140 |
AutoEvalColumn.model.name,
|
| 141 |
]
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
| 146 |
|
| 147 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
| 148 |
"""Added by Abishek"""
|
|
@@ -291,18 +263,10 @@ with demo:
|
|
| 291 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 292 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
| 293 |
|
| 294 |
-
# leaderboard_table = gr.components.Dataframe(
|
| 295 |
-
# value=leaderboard_df_filtered,
|
| 296 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 297 |
-
# datatype=TYPES,
|
| 298 |
-
# elem_id="leaderboard-table",
|
| 299 |
-
# interactive=False,
|
| 300 |
-
# visible=True,
|
| 301 |
-
# )
|
| 302 |
leaderboard_table = gr.components.Dataframe(
|
| 303 |
-
value=
|
| 304 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 305 |
-
datatype=
|
| 306 |
elem_id="leaderboard-table",
|
| 307 |
interactive=False,
|
| 308 |
visible=True,
|
|
|
|
| 63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 64 |
|
| 65 |
# Searching and filtering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def update_table(
|
| 67 |
hidden_df: pd.DataFrame,
|
| 68 |
columns: list,
|
|
|
|
| 76 |
show_flagged: bool,
|
| 77 |
query: str,
|
| 78 |
):
|
| 79 |
+
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 80 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 81 |
+
|
| 82 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 83 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 84 |
+
|
| 85 |
filtered_df = filter_queries(query, filtered_df)
|
| 86 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 87 |
+
|
| 88 |
+
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 89 |
+
print("Filtered dataframe head:")
|
| 90 |
+
print(filtered_df.head())
|
| 91 |
+
|
| 92 |
df = select_columns(filtered_df, columns)
|
| 93 |
+
print(f"Final df shape: {df.shape}")
|
| 94 |
+
print("Final dataframe head:")
|
| 95 |
+
print(df.head())
|
| 96 |
return df
|
| 97 |
|
| 98 |
|
|
|
|
| 105 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 106 |
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 109 |
always_here_cols = [
|
| 110 |
AutoEvalColumn.model_type_symbol.name,
|
| 111 |
AutoEvalColumn.model.name,
|
| 112 |
]
|
| 113 |
+
# We use COLS to maintain sorting
|
| 114 |
+
filtered_df = df[
|
| 115 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]# + [AutoEvalColumn.dummy.name]
|
| 116 |
+
]
|
| 117 |
+
return filtered_df
|
| 118 |
|
| 119 |
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
| 120 |
"""Added by Abishek"""
|
|
|
|
| 263 |
initial_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.displayed_by_default]
|
| 264 |
leaderboard_df_filtered = select_columns(leaderboard_df_filtered, initial_columns)
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
leaderboard_table = gr.components.Dataframe(
|
| 267 |
+
value=leaderboard_df_filtered,
|
| 268 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 269 |
+
datatype=TYPES,
|
| 270 |
elem_id="leaderboard-table",
|
| 271 |
interactive=False,
|
| 272 |
visible=True,
|