Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,6 +53,9 @@ except Exception:
|
|
| 53 |
restart_space()
|
| 54 |
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
|
|
|
|
|
|
|
| 56 |
original_df = LEADERBOARD_DF
|
| 57 |
leaderboard_df = original_df.copy()
|
| 58 |
(
|
|
@@ -76,12 +79,23 @@ def update_table(
|
|
| 76 |
show_flagged: bool,
|
| 77 |
query: str,
|
| 78 |
):
|
|
|
|
|
|
|
|
|
|
| 79 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
|
|
|
|
| 80 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
| 81 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 82 |
-
print(
|
|
|
|
| 83 |
|
| 84 |
df = select_columns(filtered_df, columns)
|
|
|
|
|
|
|
|
|
|
| 85 |
return df
|
| 86 |
|
| 87 |
|
|
@@ -129,29 +143,37 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 129 |
def filter_models(
|
| 130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 131 |
) -> pd.DataFrame:
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
| 133 |
if show_deleted:
|
| 134 |
filtered_df = df
|
| 135 |
-
else:
|
| 136 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 137 |
-
|
| 138 |
-
#if not show_merges:
|
| 139 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 140 |
-
|
| 141 |
-
#if not show_flagged:
|
| 142 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 143 |
|
| 144 |
type_emoji = [t[0] for t in type_query]
|
| 145 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
|
|
|
|
|
|
| 146 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
|
|
|
|
| 147 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
|
|
|
|
|
|
| 148 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
| 149 |
-
|
| 150 |
|
| 151 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 152 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 153 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 154 |
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
return filtered_df
|
| 156 |
|
| 157 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
@@ -248,7 +270,9 @@ with demo:
|
|
| 248 |
visible=True,
|
| 249 |
#column_widths=["2%", "33%"]
|
| 250 |
)
|
| 251 |
-
print(
|
|
|
|
|
|
|
| 252 |
|
| 253 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 254 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
|
|
| 53 |
restart_space()
|
| 54 |
|
| 55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
| 56 |
+
print("Initial LEADERBOARD_DF:")
|
| 57 |
+
print(LEADERBOARD_DF.head())
|
| 58 |
+
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
|
| 59 |
original_df = LEADERBOARD_DF
|
| 60 |
leaderboard_df = original_df.copy()
|
| 61 |
(
|
|
|
|
| 79 |
show_flagged: bool,
|
| 80 |
query: str,
|
| 81 |
):
|
| 82 |
+
print(f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}")
|
| 83 |
+
print(f"hidden_df shape before filtering: {hidden_df.shape}")
|
| 84 |
+
|
| 85 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
| 86 |
+
print(f"filtered_df shape after filter_models: {filtered_df.shape}")
|
| 87 |
+
|
| 88 |
filtered_df = filter_queries(query, filtered_df)
|
| 89 |
+
print(f"filtered_df shape after filter_queries: {filtered_df.shape}")
|
| 90 |
+
|
| 91 |
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
| 92 |
+
print("Filtered dataframe head:")
|
| 93 |
+
print(filtered_df.head())
|
| 94 |
|
| 95 |
df = select_columns(filtered_df, columns)
|
| 96 |
+
print(f"Final df shape: {df.shape}")
|
| 97 |
+
print("Final dataframe head:")
|
| 98 |
+
print(df.head())
|
| 99 |
return df
|
| 100 |
|
| 101 |
|
|
|
|
| 143 |
def filter_models(
|
| 144 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 145 |
) -> pd.DataFrame:
|
| 146 |
+
print(f"filter_models called with: type_query={type_query}, size_query={size_query}, precision_query={precision_query}")
|
| 147 |
+
print(f"Initial df shape: {df.shape}")
|
| 148 |
+
|
| 149 |
+
# 各フィルタリング操作の後にprint文を追加
|
| 150 |
if show_deleted:
|
| 151 |
filtered_df = df
|
| 152 |
+
else:
|
| 153 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 154 |
+
print(f"After deletion filter: {filtered_df.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
type_emoji = [t[0] for t in type_query]
|
| 157 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 158 |
+
print(f"After type filter: {filtered_df.shape}")
|
| 159 |
+
|
| 160 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 161 |
+
print(f"After precision filter: {filtered_df.shape}")
|
| 162 |
+
|
| 163 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
| 164 |
+
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
| 165 |
+
|
| 166 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
| 167 |
+
print(f"After num_few_shots filter: {filtered_df.shape}")
|
| 168 |
|
| 169 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 170 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 171 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 172 |
filtered_df = filtered_df.loc[mask]
|
| 173 |
+
print(f"After size filter: {filtered_df.shape}")
|
| 174 |
+
|
| 175 |
+
print("Filtered dataframe head:")
|
| 176 |
+
print(filtered_df.head())
|
| 177 |
return filtered_df
|
| 178 |
|
| 179 |
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
|
|
|
| 270 |
visible=True,
|
| 271 |
#column_widths=["2%", "33%"]
|
| 272 |
)
|
| 273 |
+
print("Leaderboard table initial value:")
|
| 274 |
+
print(leaderboard_table.value.head())
|
| 275 |
+
print(f"Leaderboard table shape: {leaderboard_table.value.shape}")
|
| 276 |
|
| 277 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 278 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|