Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
|
@@ -59,44 +58,92 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
| 59 |
failed_eval_queue_df,
|
| 60 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
interactive=False,
|
| 97 |
-
)
|
| 98 |
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
demo = gr.Blocks(css=custom_css)
|
| 101 |
with demo:
|
| 102 |
gr.HTML(TITLE)
|
|
@@ -104,7 +151,138 @@ with demo:
|
|
| 104 |
|
| 105 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 106 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 110 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 4 |
from huggingface_hub import snapshot_download
|
|
|
|
| 58 |
failed_eval_queue_df,
|
| 59 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 60 |
|
| 61 |
+
# Searching and filtering
|
| 62 |
+
def update_table(
|
| 63 |
+
hidden_df: pd.DataFrame,
|
| 64 |
+
columns: list,
|
| 65 |
+
type_query: list,
|
| 66 |
+
precision_query: str,
|
| 67 |
+
size_query: list,
|
| 68 |
+
show_deleted: bool,
|
| 69 |
+
show_merges: bool,
|
| 70 |
+
show_flagged: bool,
|
| 71 |
+
query: str,
|
| 72 |
+
):
|
| 73 |
+
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted, show_merges, show_flagged)
|
| 74 |
+
filtered_df = filter_queries(query, filtered_df)
|
| 75 |
+
df = select_columns(filtered_df, columns)
|
| 76 |
+
return df
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists
|
| 80 |
+
query = request.query_params.get("query") or ""
|
| 81 |
+
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
| 85 |
+
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
| 89 |
+
always_here_cols = [
|
| 90 |
+
AutoEvalColumn.model_type_symbol.name,
|
| 91 |
+
AutoEvalColumn.model.name,
|
| 92 |
+
]
|
| 93 |
+
# We use COLS to maintain sorting
|
| 94 |
+
filtered_df = df[
|
| 95 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
|
| 96 |
+
]
|
| 97 |
+
return filtered_df
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame):
|
| 101 |
+
"""Added by Abishek"""
|
| 102 |
+
final_df = []
|
| 103 |
+
if query != "":
|
| 104 |
+
queries = [q.strip() for q in query.split(";")]
|
| 105 |
+
for _q in queries:
|
| 106 |
+
_q = _q.strip()
|
| 107 |
+
if _q != "":
|
| 108 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
| 109 |
+
if len(temp_filtered_df) > 0:
|
| 110 |
+
final_df.append(temp_filtered_df)
|
| 111 |
+
if len(final_df) > 0:
|
| 112 |
+
filtered_df = pd.concat(final_df)
|
| 113 |
+
filtered_df = filtered_df.drop_duplicates(
|
| 114 |
+
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
| 115 |
)
|
| 116 |
+
|
| 117 |
+
return filtered_df
|
|
|
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
+
def filter_models(
|
| 121 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
| 122 |
+
) -> pd.DataFrame:
|
| 123 |
+
# Show all models
|
| 124 |
+
if show_deleted:
|
| 125 |
+
filtered_df = df
|
| 126 |
+
else: # Show only still on the hub models
|
| 127 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 128 |
+
|
| 129 |
+
if not show_merges:
|
| 130 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
| 131 |
+
|
| 132 |
+
if not show_flagged:
|
| 133 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
| 134 |
+
|
| 135 |
+
type_emoji = [t[0] for t in type_query]
|
| 136 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 137 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 138 |
+
|
| 139 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 140 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 141 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 142 |
+
filtered_df = filtered_df.loc[mask]
|
| 143 |
+
return filtered_df
|
| 144 |
+
|
| 145 |
+
leaderboard_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], False, False, False)
|
| 146 |
+
|
| 147 |
demo = gr.Blocks(css=custom_css)
|
| 148 |
with demo:
|
| 149 |
gr.HTML(TITLE)
|
|
|
|
| 151 |
|
| 152 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 153 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 154 |
+
with gr.Row():
|
| 155 |
+
with gr.Column():
|
| 156 |
+
with gr.Row():
|
| 157 |
+
search_bar = gr.Textbox(
|
| 158 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 159 |
+
show_label=False,
|
| 160 |
+
elem_id="search-bar",
|
| 161 |
+
)
|
| 162 |
+
with gr.Row():
|
| 163 |
+
shown_columns = gr.CheckboxGroup(
|
| 164 |
+
choices=[
|
| 165 |
+
c.name
|
| 166 |
+
for c in fields(AutoEvalColumn)
|
| 167 |
+
if not c.hidden and not c.never_hidden and not c.dummy
|
| 168 |
+
],
|
| 169 |
+
value=[
|
| 170 |
+
c.name
|
| 171 |
+
for c in fields(AutoEvalColumn)
|
| 172 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 173 |
+
],
|
| 174 |
+
label="Select columns to show",
|
| 175 |
+
elem_id="column-select",
|
| 176 |
+
interactive=True,
|
| 177 |
+
)
|
| 178 |
+
with gr.Row():
|
| 179 |
+
deleted_models_visibility = gr.Checkbox(
|
| 180 |
+
value=False, label="Show private/deleted models", interactive=True
|
| 181 |
+
)
|
| 182 |
+
merged_models_visibility = gr.Checkbox(
|
| 183 |
+
value=False, label="Show merges", interactive=True
|
| 184 |
+
)
|
| 185 |
+
flagged_models_visibility = gr.Checkbox(
|
| 186 |
+
value=False, label="Show flagged models", interactive=True
|
| 187 |
+
)
|
| 188 |
+
with gr.Column(min_width=320):
|
| 189 |
+
#with gr.Box(elem_id="box-filter"):
|
| 190 |
+
filter_columns_type = gr.CheckboxGroup(
|
| 191 |
+
label="Model types",
|
| 192 |
+
choices=[t.to_str() for t in ModelType],
|
| 193 |
+
value=[t.to_str() for t in ModelType],
|
| 194 |
+
interactive=True,
|
| 195 |
+
elem_id="filter-columns-type",
|
| 196 |
+
)
|
| 197 |
+
filter_columns_precision = gr.CheckboxGroup(
|
| 198 |
+
label="Precision",
|
| 199 |
+
choices=[i.value.name for i in Precision],
|
| 200 |
+
value=[i.value.name for i in Precision],
|
| 201 |
+
interactive=True,
|
| 202 |
+
elem_id="filter-columns-precision",
|
| 203 |
+
)
|
| 204 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 205 |
+
label="Model sizes (in billions of parameters)",
|
| 206 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
| 207 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
| 208 |
+
interactive=True,
|
| 209 |
+
elem_id="filter-columns-size",
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
leaderboard_table = gr.components.Dataframe(
|
| 213 |
+
value=leaderboard_df[
|
| 214 |
+
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 215 |
+
+ shown_columns.value
|
| 216 |
+
+ [AutoEvalColumn.dummy.name]
|
| 217 |
+
],
|
| 218 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 219 |
+
datatype=TYPES,
|
| 220 |
+
elem_id="leaderboard-table",
|
| 221 |
+
interactive=False,
|
| 222 |
+
visible=True,
|
| 223 |
+
#column_widths=["2%", "33%"]
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 227 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 228 |
+
value=original_df[COLS],
|
| 229 |
+
headers=COLS,
|
| 230 |
+
datatype=TYPES,
|
| 231 |
+
visible=False,
|
| 232 |
+
)
|
| 233 |
+
search_bar.submit(
|
| 234 |
+
update_table,
|
| 235 |
+
[
|
| 236 |
+
hidden_leaderboard_table_for_search,
|
| 237 |
+
shown_columns,
|
| 238 |
+
filter_columns_type,
|
| 239 |
+
filter_columns_precision,
|
| 240 |
+
filter_columns_size,
|
| 241 |
+
deleted_models_visibility,
|
| 242 |
+
merged_models_visibility,
|
| 243 |
+
flagged_models_visibility,
|
| 244 |
+
search_bar,
|
| 245 |
+
],
|
| 246 |
+
leaderboard_table,
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# Define a hidden component that will trigger a reload only if a query parameter has be set
|
| 250 |
+
hidden_search_bar = gr.Textbox(value="", visible=False)
|
| 251 |
+
hidden_search_bar.change(
|
| 252 |
+
update_table,
|
| 253 |
+
[
|
| 254 |
+
hidden_leaderboard_table_for_search,
|
| 255 |
+
shown_columns,
|
| 256 |
+
filter_columns_type,
|
| 257 |
+
filter_columns_precision,
|
| 258 |
+
filter_columns_size,
|
| 259 |
+
deleted_models_visibility,
|
| 260 |
+
merged_models_visibility,
|
| 261 |
+
flagged_models_visibility,
|
| 262 |
+
search_bar,
|
| 263 |
+
],
|
| 264 |
+
leaderboard_table,
|
| 265 |
+
)
|
| 266 |
+
# Check query parameter once at startup and update search bar + hidden component
|
| 267 |
+
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 268 |
+
|
| 269 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility, merged_models_visibility, flagged_models_visibility]:
|
| 270 |
+
selector.change(
|
| 271 |
+
update_table,
|
| 272 |
+
[
|
| 273 |
+
hidden_leaderboard_table_for_search,
|
| 274 |
+
shown_columns,
|
| 275 |
+
filter_columns_type,
|
| 276 |
+
filter_columns_precision,
|
| 277 |
+
filter_columns_size,
|
| 278 |
+
deleted_models_visibility,
|
| 279 |
+
merged_models_visibility,
|
| 280 |
+
flagged_models_visibility,
|
| 281 |
+
search_bar,
|
| 282 |
+
],
|
| 283 |
+
leaderboard_table,
|
| 284 |
+
queue=True,
|
| 285 |
+
)
|
| 286 |
|
| 287 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 288 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|