Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os | |
| import gradio as gr | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| BOTTOM_LOGO, | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_LABEL_JA, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| EVALUATION_QUEUE_TEXT_JA, | |
| INTRODUCTION_TEXT, | |
| INTRODUCTION_TEXT_JA, | |
| LLM_BENCHMARKS_TEXT, | |
| LLM_BENCHMARKS_TEXT_JA, | |
| TITLE, | |
| TaskType, | |
| ) | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| NUMERIC_INTERVALS, | |
| TYPES, | |
| AddSpecialTokens, | |
| AutoEvalColumn, | |
| ModelType, | |
| NumFewShots, | |
| Precision, | |
| Version, | |
| fields, | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| # Space initialization | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, | |
| local_dir=EVAL_RESULTS_PATH, | |
| repo_type="dataset", | |
| tqdm_class=None, | |
| etag_timeout=30, | |
| ) | |
| except Exception: | |
| restart_space() | |
| # Searching and filtering | |
| def filter_models( | |
| df: pd.DataFrame, | |
| type_query: list, | |
| size_query: list, | |
| precision_query: list, | |
| add_special_tokens_query: list, | |
| num_few_shots_query: list, | |
| version_query: list, | |
| # backend_query: list, | |
| ) -> pd.DataFrame: | |
| print(f"Initial df shape: {df.shape}") | |
| print(f"Initial df content:\n{df}") | |
| filtered_df = df | |
| # Model Type フィルタリング | |
| type_column = "T" if "T" in df.columns else "Type_" | |
| type_emoji = [t.split()[0] for t in type_query] | |
| filtered_df = df[df[type_column].isin(type_emoji)] | |
| print(f"After type filter: {filtered_df.shape}") | |
| # Precision フィルタリング | |
| filtered_df = filtered_df[filtered_df["Precision"].isin(precision_query)] | |
| print(f"After precision filter: {filtered_df.shape}") | |
| # Model Size フィルタリング | |
| size_mask = filtered_df["#Params (B)"].apply( | |
| lambda x: any(x in NUMERIC_INTERVALS[s] for s in size_query if s != "Unknown") | |
| ) | |
| if "Unknown" in size_query: | |
| size_mask |= filtered_df["#Params (B)"].isna() | (filtered_df["#Params (B)"] == 0) | |
| filtered_df = filtered_df[size_mask] | |
| print(f"After size filter: {filtered_df.shape}") | |
| # Add Special Tokens フィルタリング | |
| filtered_df = filtered_df[filtered_df["Add Special Tokens"].isin(add_special_tokens_query)] | |
| print(f"After add_special_tokens filter: {filtered_df.shape}") | |
| # Num Few Shots フィルタリング | |
| filtered_df = filtered_df[filtered_df["Few-shot"].astype(str).isin(num_few_shots_query)] | |
| print(f"After num_few_shots filter: {filtered_df.shape}") | |
| # Version フィルタリング | |
| filtered_df = filtered_df[filtered_df["llm-jp-eval version"].isin(version_query)] | |
| print(f"After version filter: {filtered_df.shape}") | |
| # Backend フィルタリング | |
| # filtered_df = filtered_df[filtered_df["Backend Library"].isin(backend_query)] | |
| # print(f"After backend filter: {filtered_df.shape}") | |
| print("Filtered dataframe head:") | |
| print(filtered_df.head()) | |
| return filtered_df | |
| def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
| return df[df[AutoEvalColumn.dummy.name].str.contains(query, case=False)] | |
| def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
| """Added by Abishek""" | |
| if not query: | |
| return filtered_df | |
| final_df = [] | |
| queries = [q.strip() for q in query.split(";")] | |
| for _q in queries: | |
| _q = _q.strip() | |
| if _q != "": | |
| temp_filtered_df = search_table(filtered_df, _q) | |
| if len(temp_filtered_df) > 0: | |
| final_df.append(temp_filtered_df) | |
| if len(final_df) > 0: | |
| filtered_df = pd.concat(final_df) | |
| filtered_df = filtered_df.drop_duplicates( | |
| subset=[ | |
| AutoEvalColumn.model.name, | |
| AutoEvalColumn.precision.name, | |
| AutoEvalColumn.revision.name, | |
| ] | |
| ) | |
| return filtered_df | |
| def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
| always_here_cols = [ | |
| AutoEvalColumn.model_type_symbol.name, # 'T' | |
| AutoEvalColumn.model.name, # 'Model' | |
| ] | |
| # 'always_here_cols' を 'columns' から除外して重複を避ける | |
| columns = [c for c in columns if c not in always_here_cols] | |
| new_columns = ( | |
| always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name] | |
| ) | |
| # 重複を排除しつつ順序を維持 | |
| seen = set() | |
| unique_columns = [] | |
| for c in new_columns: | |
| if c not in seen: | |
| unique_columns.append(c) | |
| seen.add(c) | |
| # フィルタリングされたカラムでデータフレームを作成 | |
| filtered_df = df[unique_columns] | |
| return filtered_df | |
| def update_table( | |
| hidden_df: pd.DataFrame, | |
| type_query: list, | |
| precision_query: str, | |
| size_query: list, | |
| add_special_tokens_query: list, | |
| num_few_shots_query: list, | |
| version_query: list, | |
| # backend_query: list, | |
| query: str, | |
| *columns, | |
| ): | |
| columns = [item for column in columns for item in column] | |
| print( | |
| f"Update table called with: type_query={type_query}, precision_query={precision_query}, size_query={size_query}" | |
| ) | |
| print(f"hidden_df shape before filtering: {hidden_df.shape}") | |
| filtered_df = filter_models( | |
| hidden_df, | |
| type_query, | |
| size_query, | |
| precision_query, | |
| add_special_tokens_query, | |
| num_few_shots_query, | |
| version_query, | |
| # backend_query, | |
| ) | |
| print(f"filtered_df shape after filter_models: {filtered_df.shape}") | |
| filtered_df = filter_queries(query, filtered_df) | |
| print(f"filtered_df shape after filter_queries: {filtered_df.shape}") | |
| print( | |
| f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}" | |
| ) | |
| print("Filtered dataframe head:") | |
| print(filtered_df.head()) | |
| df = select_columns(filtered_df, columns) | |
| print(f"Final df shape: {df.shape}") | |
| print("Final dataframe head:") | |
| print(df.head()) | |
| return df | |
| def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
| query = request.query_params.get("query") or "" | |
| return ( | |
| query, | |
| query, | |
| ) # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
| # Prepare the dataframes | |
| original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| leaderboard_df = original_df.copy() | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| failed_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| leaderboard_df = filter_models( | |
| leaderboard_df, | |
| [t.to_str(" : ") for t in ModelType], | |
| list(NUMERIC_INTERVALS.keys()), | |
| [i.value.name for i in Precision], | |
| [i.value.name for i in AddSpecialTokens], | |
| [i.value.name for i in NumFewShots], | |
| [i.value.name for i in Version], | |
| # [i.value.name for i in Backend], | |
| ) | |
| leaderboard_df_filtered = filter_models( | |
| leaderboard_df, | |
| [t.to_str(" : ") for t in ModelType], | |
| list(NUMERIC_INTERVALS.keys()), | |
| [i.value.name for i in Precision], | |
| [i.value.name for i in AddSpecialTokens], | |
| [i.value.name for i in NumFewShots], | |
| [i.value.name for i in Version], | |
| # [i.value.name for i in Backend], | |
| ) | |
| # DataFrameの初期化部分のみを修正 | |
| initial_columns = ["T"] + [ | |
| c.name for c in fields(AutoEvalColumn) if (c.never_hidden or c.displayed_by_default) and c.name != "T" | |
| ] | |
| leaderboard_df_filtered = select_columns(leaderboard_df, initial_columns) | |
| # Leaderboard demo | |
| with gr.Blocks() as demo_leaderboard: | |
| with gr.Row(): | |
| search_bar = gr.Textbox( | |
| placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...", | |
| show_label=False, | |
| elem_id="search-bar", | |
| ) | |
| with gr.Row(): | |
| shown_columns_dict = {} | |
| for task_type in TaskType: | |
| if task_type == TaskType.NotTask: | |
| label = "Model details" | |
| else: | |
| label = task_type.value | |
| with gr.Accordion(label, open=True, elem_classes="accordion"): | |
| with gr.Row(height=110): | |
| shown_column = gr.CheckboxGroup( | |
| show_label=False, | |
| choices=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if not c.hidden and not c.never_hidden and not c.dummy and c.task_type == task_type | |
| # and not c.average | |
| # or (task_type == TaskType.AVG and c.average) | |
| ], | |
| value=[ | |
| c.name | |
| for c in fields(AutoEvalColumn) | |
| if c.displayed_by_default | |
| and not c.hidden | |
| and not c.never_hidden | |
| and c.task_type == task_type | |
| # and not c.average | |
| # or (task_type == TaskType.AVG and c.average) | |
| ], | |
| elem_id="column-select", | |
| container=False, | |
| ) | |
| shown_columns_dict[task_type.name] = shown_column | |
| with gr.Row(): | |
| filter_columns_type = gr.CheckboxGroup( | |
| label="Model types", | |
| choices=[t.to_str() for t in ModelType], | |
| value=[t.to_str() for t in ModelType], | |
| elem_id="filter-columns-type", | |
| ) | |
| filter_columns_precision = gr.CheckboxGroup( | |
| label="Precision", | |
| choices=[i.value.name for i in Precision], | |
| value=[i.value.name for i in Precision], | |
| elem_id="filter-columns-precision", | |
| ) | |
| filter_columns_size = gr.CheckboxGroup( | |
| label="Model sizes (in billions of parameters)", | |
| choices=list(NUMERIC_INTERVALS.keys()), | |
| value=list(NUMERIC_INTERVALS.keys()), | |
| elem_id="filter-columns-size", | |
| ) | |
| filter_columns_add_special_tokens = gr.CheckboxGroup( | |
| label="Add Special Tokens", | |
| choices=[i.value.name for i in AddSpecialTokens], | |
| value=[i.value.name for i in AddSpecialTokens], | |
| elem_id="filter-columns-add-special-tokens", | |
| ) | |
| filter_columns_num_few_shots = gr.CheckboxGroup( | |
| label="Num Few Shots", | |
| choices=[i.value.name for i in NumFewShots], | |
| value=[i.value.name for i in NumFewShots], | |
| elem_id="filter-columns-num-few-shots", | |
| ) | |
| filter_columns_version = gr.CheckboxGroup( | |
| label="llm-jp-eval version", | |
| choices=[i.value.name for i in Version], | |
| value=[i.value.name for i in Version], | |
| elem_id="filter-columns-version", | |
| ) | |
| # filter_columns_backend = gr.CheckboxGroup( | |
| # label="Backend Library", | |
| # choices=[i.value.name for i in Backend], | |
| # value=[i.value.name for i in Backend], | |
| # elem_id="filter-columns-backend", | |
| # ) | |
| # DataFrameコンポーネントの初期化 | |
| leaderboard_table = gr.Dataframe( | |
| value=leaderboard_df_filtered, | |
| headers=initial_columns, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # Dummy leaderboard for handling the case when the user uses backspace key | |
| hidden_leaderboard_table_for_search = gr.Dataframe( | |
| value=original_df[COLS], | |
| headers=COLS, | |
| datatype=TYPES, | |
| visible=False, | |
| ) | |
| # Define a hidden component that will trigger a reload only if a query parameter has been set | |
| hidden_search_bar = gr.Textbox(value="", visible=False) | |
| gr.on( | |
| triggers=[ | |
| hidden_search_bar.change, | |
| filter_columns_type.change, | |
| filter_columns_precision.change, | |
| filter_columns_size.change, | |
| filter_columns_add_special_tokens.change, | |
| filter_columns_num_few_shots.change, | |
| filter_columns_version.change, | |
| # filter_columns_backend.change, | |
| search_bar.submit, | |
| ] | |
| + [shown_columns.change for shown_columns in shown_columns_dict.values()], | |
| fn=update_table, | |
| inputs=[ | |
| hidden_leaderboard_table_for_search, | |
| filter_columns_type, | |
| filter_columns_precision, | |
| filter_columns_size, | |
| filter_columns_add_special_tokens, | |
| filter_columns_num_few_shots, | |
| filter_columns_version, | |
| # filter_columns_backend, | |
| search_bar, | |
| ] | |
| + [shown_columns for shown_columns in shown_columns_dict.values()], | |
| outputs=leaderboard_table, | |
| ) | |
| # Check query parameter once at startup and update search bar + hidden component | |
| demo_leaderboard.load(fn=load_query, outputs=[search_bar, hidden_search_bar]) | |
| # Submission demo | |
| with gr.Blocks() as demo_submission: | |
| with gr.Column(): | |
| with gr.Row(): | |
| evaluation_queue_text = gr.Markdown(EVALUATION_QUEUE_TEXT_JA, elem_classes="markdown-text") | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.Dataframe( | |
| value=finished_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| running_eval_table = gr.Dataframe( | |
| value=running_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.Dataframe( | |
| value=pending_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"❎ Failed Evaluation Queue ({len(failed_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| failed_eval_table = gr.Dataframe( | |
| value=failed_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| label="Model type", | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| multiselect=False, | |
| value=None, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| label="Precision", | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| multiselect=False, | |
| value="float16", | |
| ) | |
| add_special_tokens = gr.Dropdown( | |
| label="AddSpecialTokens", | |
| choices=[i.value.name for i in AddSpecialTokens if i != AddSpecialTokens.Unknown], | |
| multiselect=False, | |
| value="False", | |
| ) | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| fn=add_new_eval, | |
| inputs=[ | |
| model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| model_type, | |
| add_special_tokens, | |
| ], | |
| outputs=submission_result, | |
| ) | |
| # Main demo | |
| def set_default_language(request: gr.Request) -> gr.Radio: | |
| if request.headers["Accept-Language"].split(",")[0].lower().startswith("ja"): | |
| return gr.Radio(value="🇯🇵 JA") | |
| else: | |
| return gr.Radio(value="🇺🇸 EN") | |
| def update_language(language: str) -> tuple[gr.Markdown, gr.Markdown, gr.Markdown, gr.Textbox]: | |
| if language == "🇯🇵 JA": | |
| return ( | |
| gr.Markdown(value=INTRODUCTION_TEXT_JA), | |
| gr.Markdown(value=LLM_BENCHMARKS_TEXT_JA), | |
| gr.Markdown(value=EVALUATION_QUEUE_TEXT_JA), | |
| gr.Textbox(label=CITATION_BUTTON_LABEL_JA), | |
| ) | |
| else: | |
| return ( | |
| gr.Markdown(value=INTRODUCTION_TEXT), | |
| gr.Markdown(value=LLM_BENCHMARKS_TEXT), | |
| gr.Markdown(value=EVALUATION_QUEUE_TEXT), | |
| gr.Textbox(label=CITATION_BUTTON_LABEL), | |
| ) | |
| with gr.Blocks(css_paths="style.css", theme=gr.themes.Glass()) as demo: | |
| gr.HTML(TITLE) | |
| introduction_text = gr.Markdown(INTRODUCTION_TEXT_JA, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
| demo_leaderboard.render() | |
| with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2): | |
| llm_benchmarks_text = gr.Markdown(LLM_BENCHMARKS_TEXT_JA, elem_classes="markdown-text") | |
| with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| demo_submission.render() | |
| with gr.Row(): | |
| with gr.Accordion("📙 Citation", open=False): | |
| citation_button = gr.Textbox( | |
| label=CITATION_BUTTON_LABEL_JA, | |
| value=CITATION_BUTTON_TEXT, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| gr.HTML(BOTTOM_LOGO) | |
| language = gr.Radio( | |
| choices=["🇯🇵 JA", "🇺🇸 EN"], | |
| value="🇯🇵 JA", | |
| elem_classes="language-selector", | |
| show_label=False, | |
| container=False, | |
| ) | |
| demo.load(fn=set_default_language, outputs=language) | |
| language.change( | |
| fn=update_language, | |
| inputs=language, | |
| outputs=[ | |
| introduction_text, | |
| llm_benchmarks_text, | |
| evaluation_queue_text, | |
| citation_button, | |
| ], | |
| api_name=False, | |
| ) | |
| if __name__ == "__main__": | |
| if os.getenv("SPACE_ID"): | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |