# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from copy import deepcopy
from typing import Optional

import numpy as np
import torch
from mmengine.config import Config
from mmengine.dataset import pseudo_collate
from mmengine.structures import InstanceData, PixelData

from mmpose.structures import MultilevelPixelData, PoseDataSample
from mmpose.structures.bbox import bbox_xyxy2cs


def get_coco_sample(
        img_shape=(240, 320),
        img_fill: Optional[int] = None,
        num_instances=1,
        with_bbox_cs=True,
        with_img_mask=False,
        random_keypoints_visible=False,
        non_occlusion=False):
    """Create a dummy data sample in COCO style."""
    rng = np.random.RandomState(0)
    h, w = img_shape
    if img_fill is None:
        img = np.random.randint(0, 256, (h, w, 3), dtype=np.uint8)
    else:
        img = np.full((h, w, 3), img_fill, dtype=np.uint8)

    if non_occlusion:
        bbox = _rand_bboxes(rng, num_instances, w / num_instances, h)
        for i in range(num_instances):
            bbox[i, 0::2] += w / num_instances * i
    else:
        bbox = _rand_bboxes(rng, num_instances, w, h)

    keypoints = _rand_keypoints(rng, bbox, 17)
    if random_keypoints_visible:
        keypoints_visible = np.random.randint(0, 2, (num_instances,
                                                     17)).astype(np.float32)
    else:
        keypoints_visible = np.full((num_instances, 17), 1, dtype=np.float32)

    upper_body_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    lower_body_ids = [11, 12, 13, 14, 15, 16]
    flip_pairs = [[2, 1], [1, 2], [4, 3], [3, 4], [6, 5], [5, 6], [8, 7],
                  [7, 8], [10, 9], [9, 10], [12, 11], [11, 12], [14, 13],
                  [13, 14], [16, 15], [15, 16]]
    flip_indices = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
    dataset_keypoint_weights = np.array([
        1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.5, 1.5, 1., 1., 1.2, 1.2, 1.5,
        1.5
    ]).astype(np.float32)

    data = {
        'img': img,
        'img_shape': img_shape,
        'ori_shape': img_shape,
        'bbox': bbox,
        'keypoints': keypoints,
        'keypoints_visible': keypoints_visible,
        'upper_body_ids': upper_body_ids,
        'lower_body_ids': lower_body_ids,
        'flip_pairs': flip_pairs,
        'flip_indices': flip_indices,
        'dataset_keypoint_weights': dataset_keypoint_weights,
        'invalid_segs': [],
    }

    if with_bbox_cs:
        data['bbox_center'], data['bbox_scale'] = bbox_xyxy2cs(data['bbox'])

    if with_img_mask:
        data['img_mask'] = np.random.randint(0, 2, (h, w), dtype=np.uint8)

    return data


def get_packed_inputs(batch_size=2,
                      num_instances=1,
                      num_keypoints=17,
                      num_levels=1,
                      img_shape=(256, 192),
                      input_size=(192, 256),
                      heatmap_size=(48, 64),
                      simcc_split_ratio=2.0,
                      with_heatmap=True,
                      with_reg_label=True,
                      with_simcc_label=True):
    """Create a dummy batch of model inputs and data samples."""
    rng = np.random.RandomState(0)

    inputs_list = []
    for idx in range(batch_size):
        inputs = dict()

        # input
        h, w = img_shape
        image = rng.randint(0, 255, size=(3, h, w), dtype=np.uint8)
        inputs['inputs'] = torch.from_numpy(image)

        # meta
        img_meta = {
            'id': idx,
            'img_id': idx,
            'img_path': '<demo>.png',
            'img_shape': img_shape,
            'input_size': input_size,
            'flip': False,
            'flip_direction': None,
            'flip_indices': list(range(num_keypoints))
        }

        np.random.shuffle(img_meta['flip_indices'])
        data_sample = PoseDataSample(metainfo=img_meta)

        # gt_instance
        gt_instances = InstanceData()
        gt_instance_labels = InstanceData()
        bboxes = _rand_bboxes(rng, num_instances, w, h)
        bbox_centers, bbox_scales = bbox_xyxy2cs(bboxes)

        keypoints = _rand_keypoints(rng, bboxes, num_keypoints)
        keypoints_visible = np.ones((num_instances, num_keypoints),
                                    dtype=np.float32)

        # [N, K] -> [N, num_levels, K]
        # keep the first dimension as the num_instances
        if num_levels > 1:
            keypoint_weights = np.tile(keypoints_visible[:, None],
                                       (1, num_levels, 1))
        else:
            keypoint_weights = keypoints_visible.copy()

        gt_instances.bboxes = bboxes
        gt_instances.bbox_centers = bbox_centers
        gt_instances.bbox_scales = bbox_scales
        gt_instances.bbox_scores = np.ones((num_instances, ), dtype=np.float32)
        gt_instances.keypoints = keypoints
        gt_instances.keypoints_visible = keypoints_visible

        gt_instance_labels.keypoint_weights = torch.FloatTensor(
            keypoint_weights)

        if with_reg_label:
            gt_instance_labels.keypoint_labels = torch.FloatTensor(keypoints /
                                                                   input_size)

        if with_simcc_label:
            len_x = np.around(input_size[0] * simcc_split_ratio)
            len_y = np.around(input_size[1] * simcc_split_ratio)
            gt_instance_labels.keypoint_x_labels = torch.FloatTensor(
                _rand_simcc_label(rng, num_instances, num_keypoints, len_x))
            gt_instance_labels.keypoint_y_labels = torch.FloatTensor(
                _rand_simcc_label(rng, num_instances, num_keypoints, len_y))

        # gt_fields
        if with_heatmap:
            if num_levels == 1:
                gt_fields = PixelData()
                # generate single-level heatmaps
                W, H = heatmap_size
                heatmaps = rng.rand(num_keypoints, H, W)
                gt_fields.heatmaps = torch.FloatTensor(heatmaps)
            else:
                # generate multilevel heatmaps
                heatmaps = []
                for _ in range(num_levels):
                    W, H = heatmap_size
                    heatmaps_ = rng.rand(num_keypoints, H, W)
                    heatmaps.append(torch.FloatTensor(heatmaps_))
                # [num_levels*K, H, W]
                gt_fields = MultilevelPixelData()
                gt_fields.heatmaps = heatmaps
            data_sample.gt_fields = gt_fields

        data_sample.gt_instances = gt_instances
        data_sample.gt_instance_labels = gt_instance_labels

        inputs['data_samples'] = data_sample
        inputs_list.append(inputs)

    packed_inputs = pseudo_collate(inputs_list)
    return packed_inputs


def _rand_keypoints(rng, bboxes, num_keypoints):
    n = bboxes.shape[0]
    relative_pos = rng.rand(n, num_keypoints, 2)
    keypoints = relative_pos * bboxes[:, None, :2] + (
        1 - relative_pos) * bboxes[:, None, 2:4]

    return keypoints


def _rand_simcc_label(rng, num_instances, num_keypoints, len_feats):
    simcc_label = rng.rand(num_instances, num_keypoints, int(len_feats))
    return simcc_label


def _rand_bboxes(rng, num_instances, img_w, img_h):
    cx, cy = rng.rand(num_instances, 2).T
    bw, bh = 0.2 + 0.8 * rng.rand(num_instances, 2).T

    tl_x = ((cx * img_w) - (img_w * bw / 2)).clip(0, img_w)
    tl_y = ((cy * img_h) - (img_h * bh / 2)).clip(0, img_h)
    br_x = ((cx * img_w) + (img_w * bw / 2)).clip(0, img_w)
    br_y = ((cy * img_h) + (img_h * bh / 2)).clip(0, img_h)

    bboxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
    return bboxes


def get_repo_dir():
    """Return the path of the MMPose repo directory."""
    try:
        # Assume the function in invoked is the source mmpose repo
        repo_dir = osp.dirname(osp.dirname(osp.dirname(__file__)))
    except NameError:
        # For IPython development when __file__ is not defined
        import mmpose
        repo_dir = osp.dirname(osp.dirname(mmpose.__file__))

    return repo_dir


def get_config_file(fn: str):
    """Return full path of a config file from the given relative path."""
    repo_dir = get_repo_dir()
    if fn.startswith('configs'):
        fn_config = osp.join(repo_dir, fn)
    else:
        fn_config = osp.join(repo_dir, 'configs', fn)

    if not osp.isfile(fn_config):
        raise FileNotFoundError(f'Cannot find config file {fn_config}')

    return fn_config


def get_pose_estimator_cfg(fn: str):
    """Load model config from a config file."""

    fn_config = get_config_file(fn)
    config = Config.fromfile(fn_config)
    return deepcopy(config.model)