HumanSD / mmpose /utils /tensor_utils.py
liyy201912's picture
Upload folder using huggingface_hub
cc0dd3c
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Any, Optional, Sequence, Union
import numpy as np
import torch
from mmengine.utils import is_seq_of
from torch import Tensor
def to_numpy(x: Union[Tensor, Sequence[Tensor]],
return_device: bool = False,
unzip: bool = False) -> Union[np.ndarray, tuple]:
"""Convert torch tensor to numpy.ndarray.
Args:
x (Tensor | Sequence[Tensor]): A single tensor or a sequence of
tensors
return_device (bool): Whether return the tensor device. Defaults to
``False``
unzip (bool): Whether unzip the input sequence. Defaults to ``False``
Returns:
np.ndarray | tuple: If ``return_device`` is ``True``, return a tuple
of converted numpy array(s) and the device indicator; otherwise only
return the numpy array(s)
"""
if isinstance(x, Tensor):
arrays = x.detach().cpu().numpy()
device = x.device
elif is_seq_of(x, Tensor):
if unzip:
# convert (A, B) -> [(A[0], B[0]), (A[1], B[1]), ...]
arrays = [
tuple(to_numpy(_x[None, :]) for _x in _each)
for _each in zip(*x)
]
else:
arrays = [to_numpy(_x) for _x in x]
device = x[0].device
else:
raise ValueError(f'Invalid input type {type(x)}')
if return_device:
return arrays, device
else:
return arrays
def to_tensor(x: Union[np.ndarray, Sequence[np.ndarray]],
device: Optional[Any] = None) -> Union[Tensor, Sequence[Tensor]]:
"""Convert numpy.ndarray to torch tensor.
Args:
x (np.ndarray | Sequence[np.ndarray]): A single np.ndarray or a
sequence of tensors
tensor (Any, optional): The device indicator. Defaults to ``None``
Returns:
tuple:
- Tensor | Sequence[Tensor]: The converted Tensor or Tensor sequence
"""
if isinstance(x, np.ndarray):
return torch.tensor(x, device=device)
elif is_seq_of(x, np.ndarray):
return [to_tensor(_x, device=device) for _x in x]
else:
raise ValueError(f'Invalid input type {type(x)}')