Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import Any, Optional, Sequence, Union | |
import numpy as np | |
import torch | |
from mmengine.utils import is_seq_of | |
from torch import Tensor | |
def to_numpy(x: Union[Tensor, Sequence[Tensor]], | |
return_device: bool = False, | |
unzip: bool = False) -> Union[np.ndarray, tuple]: | |
"""Convert torch tensor to numpy.ndarray. | |
Args: | |
x (Tensor | Sequence[Tensor]): A single tensor or a sequence of | |
tensors | |
return_device (bool): Whether return the tensor device. Defaults to | |
``False`` | |
unzip (bool): Whether unzip the input sequence. Defaults to ``False`` | |
Returns: | |
np.ndarray | tuple: If ``return_device`` is ``True``, return a tuple | |
of converted numpy array(s) and the device indicator; otherwise only | |
return the numpy array(s) | |
""" | |
if isinstance(x, Tensor): | |
arrays = x.detach().cpu().numpy() | |
device = x.device | |
elif is_seq_of(x, Tensor): | |
if unzip: | |
# convert (A, B) -> [(A[0], B[0]), (A[1], B[1]), ...] | |
arrays = [ | |
tuple(to_numpy(_x[None, :]) for _x in _each) | |
for _each in zip(*x) | |
] | |
else: | |
arrays = [to_numpy(_x) for _x in x] | |
device = x[0].device | |
else: | |
raise ValueError(f'Invalid input type {type(x)}') | |
if return_device: | |
return arrays, device | |
else: | |
return arrays | |
def to_tensor(x: Union[np.ndarray, Sequence[np.ndarray]], | |
device: Optional[Any] = None) -> Union[Tensor, Sequence[Tensor]]: | |
"""Convert numpy.ndarray to torch tensor. | |
Args: | |
x (np.ndarray | Sequence[np.ndarray]): A single np.ndarray or a | |
sequence of tensors | |
tensor (Any, optional): The device indicator. Defaults to ``None`` | |
Returns: | |
tuple: | |
- Tensor | Sequence[Tensor]: The converted Tensor or Tensor sequence | |
""" | |
if isinstance(x, np.ndarray): | |
return torch.tensor(x, device=device) | |
elif is_seq_of(x, np.ndarray): | |
return [to_tensor(_x, device=device) for _x in x] | |
else: | |
raise ValueError(f'Invalid input type {type(x)}') | |