Spaces:
Runtime error
Runtime error
Upload evaluator.py with huggingface_hub
Browse files- evaluator.py +151 -0
evaluator.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math, os
|
| 2 |
+
import pickle
|
| 3 |
+
import os.path as op
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from joblib import dump, load, Parallel, delayed
|
| 7 |
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
| 8 |
+
from sklearn.metrics import mean_absolute_error, roc_auc_score
|
| 9 |
+
from sklearn.base import BaseEstimator
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
|
| 12 |
+
from rdkit import Chem
|
| 13 |
+
from rdkit import rdBase
|
| 14 |
+
from rdkit.Chem import AllChem
|
| 15 |
+
from rdkit import DataStructs
|
| 16 |
+
from rdkit.Chem import rdMolDescriptors
|
| 17 |
+
rdBase.DisableLog('rdApp.error')
|
| 18 |
+
|
| 19 |
+
def process_smiles(smiles):
|
| 20 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 21 |
+
if mol is not None:
|
| 22 |
+
return Evaluator.fingerprints_from_mol(mol), 1
|
| 23 |
+
return np.zeros((1, 2048)), 0
|
| 24 |
+
|
| 25 |
+
class Evaluator():
|
| 26 |
+
"""Scores based on an ECFP classifier."""
|
| 27 |
+
def __init__(self, model_path, task_name, n_jobs=2):
|
| 28 |
+
self.n_jobs = n_jobs
|
| 29 |
+
task_type = 'regression'
|
| 30 |
+
self.task_name = task_name
|
| 31 |
+
self.task_type = task_type
|
| 32 |
+
self.model_path = model_path
|
| 33 |
+
self.metric_func = roc_auc_score if 'classification' in self.task_type else mean_absolute_error
|
| 34 |
+
self.model = load(model_path)
|
| 35 |
+
|
| 36 |
+
def __call__(self, smiles_list):
|
| 37 |
+
fps = []
|
| 38 |
+
mask = []
|
| 39 |
+
for i,smiles in enumerate(smiles_list):
|
| 40 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 41 |
+
mask.append( int(mol is not None) )
|
| 42 |
+
fp = Evaluator.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048))
|
| 43 |
+
fps.append(fp)
|
| 44 |
+
|
| 45 |
+
fps = np.concatenate(fps, axis=0)
|
| 46 |
+
if 'classification' in self.task_type:
|
| 47 |
+
scores = self.model.predict_proba(fps)[:, 1]
|
| 48 |
+
else:
|
| 49 |
+
scores = self.model.predict(fps)
|
| 50 |
+
scores = scores * np.array(mask)
|
| 51 |
+
return np.float32(scores)
|
| 52 |
+
|
| 53 |
+
@classmethod
|
| 54 |
+
def fingerprints_from_mol(cls, mol): # use ECFP4
|
| 55 |
+
features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)
|
| 56 |
+
features = np.zeros((1,))
|
| 57 |
+
DataStructs.ConvertToNumpyArray(features_vec, features)
|
| 58 |
+
return features.reshape(1, -1)
|
| 59 |
+
|
| 60 |
+
###### SAS Score ######
|
| 61 |
+
_fscores = None
|
| 62 |
+
|
| 63 |
+
def readFragmentScores(name='fpscores'):
|
| 64 |
+
import gzip
|
| 65 |
+
global _fscores
|
| 66 |
+
# generate the full path filename:
|
| 67 |
+
if name == "fpscores":
|
| 68 |
+
name = op.join(op.dirname(__file__), name)
|
| 69 |
+
data = pickle.load(gzip.open('%s.pkl.gz' % name))
|
| 70 |
+
outDict = {}
|
| 71 |
+
for i in data:
|
| 72 |
+
for j in range(1, len(i)):
|
| 73 |
+
outDict[i[j]] = float(i[0])
|
| 74 |
+
_fscores = outDict
|
| 75 |
+
|
| 76 |
+
def numBridgeheadsAndSpiro(mol, ri=None):
|
| 77 |
+
nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol)
|
| 78 |
+
nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol)
|
| 79 |
+
return nBridgehead, nSpiro
|
| 80 |
+
|
| 81 |
+
def calculateSAS(smiles_list):
|
| 82 |
+
scores = []
|
| 83 |
+
for i, smiles in enumerate(smiles_list):
|
| 84 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 85 |
+
score = calculateScore(mol)
|
| 86 |
+
scores.append(score)
|
| 87 |
+
return np.float32(scores)
|
| 88 |
+
|
| 89 |
+
def calculateScore(m):
|
| 90 |
+
if _fscores is None:
|
| 91 |
+
readFragmentScores()
|
| 92 |
+
|
| 93 |
+
# fragment score
|
| 94 |
+
fp = rdMolDescriptors.GetMorganFingerprint(m,
|
| 95 |
+
2) # <- 2 is the *radius* of the circular fingerprint
|
| 96 |
+
fps = fp.GetNonzeroElements()
|
| 97 |
+
score1 = 0.
|
| 98 |
+
nf = 0
|
| 99 |
+
for bitId, v in fps.items():
|
| 100 |
+
nf += v
|
| 101 |
+
sfp = bitId
|
| 102 |
+
score1 += _fscores.get(sfp, -4) * v
|
| 103 |
+
score1 /= nf
|
| 104 |
+
|
| 105 |
+
# features score
|
| 106 |
+
nAtoms = m.GetNumAtoms()
|
| 107 |
+
nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True))
|
| 108 |
+
ri = m.GetRingInfo()
|
| 109 |
+
nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri)
|
| 110 |
+
nMacrocycles = 0
|
| 111 |
+
for x in ri.AtomRings():
|
| 112 |
+
if len(x) > 8:
|
| 113 |
+
nMacrocycles += 1
|
| 114 |
+
|
| 115 |
+
sizePenalty = nAtoms**1.005 - nAtoms
|
| 116 |
+
stereoPenalty = math.log10(nChiralCenters + 1)
|
| 117 |
+
spiroPenalty = math.log10(nSpiro + 1)
|
| 118 |
+
bridgePenalty = math.log10(nBridgeheads + 1)
|
| 119 |
+
macrocyclePenalty = 0.
|
| 120 |
+
# ---------------------------------------
|
| 121 |
+
# This differs from the paper, which defines:
|
| 122 |
+
# macrocyclePenalty = math.log10(nMacrocycles+1)
|
| 123 |
+
# This form generates better results when 2 or more macrocycles are present
|
| 124 |
+
if nMacrocycles > 0:
|
| 125 |
+
macrocyclePenalty = math.log10(2)
|
| 126 |
+
|
| 127 |
+
score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty
|
| 128 |
+
|
| 129 |
+
# correction for the fingerprint density
|
| 130 |
+
# not in the original publication, added in version 1.1
|
| 131 |
+
# to make highly symmetrical molecules easier to synthetise
|
| 132 |
+
score3 = 0.
|
| 133 |
+
if nAtoms > len(fps):
|
| 134 |
+
score3 = math.log(float(nAtoms) / len(fps)) * .5
|
| 135 |
+
|
| 136 |
+
sascore = score1 + score2 + score3
|
| 137 |
+
|
| 138 |
+
# need to transform "raw" value into scale between 1 and 10
|
| 139 |
+
min = -4.0
|
| 140 |
+
max = 2.5
|
| 141 |
+
sascore = 11. - (sascore - min + 1) / (max - min) * 9.
|
| 142 |
+
# smooth the 10-end
|
| 143 |
+
if sascore > 8.:
|
| 144 |
+
sascore = 8. + math.log(sascore + 1. - 9.)
|
| 145 |
+
if sascore > 10.:
|
| 146 |
+
sascore = 10.0
|
| 147 |
+
elif sascore < 1.:
|
| 148 |
+
sascore = 1.0
|
| 149 |
+
|
| 150 |
+
return sascore
|
| 151 |
+
|