Spaces:
Runtime error
Runtime error
Upload graph_decoder/layers.py with huggingface_hub
Browse files- graph_decoder/layers.py +132 -0
graph_decoder/layers.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 the Llamole team.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from torch.jit import Final
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from itertools import repeat
|
| 18 |
+
import collections.abc
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
|
| 23 |
+
class Attention(nn.Module):
|
| 24 |
+
fast_attn: Final[bool]
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
dim,
|
| 29 |
+
num_heads=8,
|
| 30 |
+
qkv_bias=False,
|
| 31 |
+
qk_norm=False,
|
| 32 |
+
attn_drop=0,
|
| 33 |
+
proj_drop=0,
|
| 34 |
+
norm_layer=nn.LayerNorm,
|
| 35 |
+
):
|
| 36 |
+
super().__init__()
|
| 37 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
| 38 |
+
self.num_heads = num_heads
|
| 39 |
+
self.head_dim = dim // num_heads
|
| 40 |
+
|
| 41 |
+
self.scale = self.head_dim**-0.5
|
| 42 |
+
self.fast_attn = hasattr(
|
| 43 |
+
torch.nn.functional, "scaled_dot_product_attention"
|
| 44 |
+
) # FIXME
|
| 45 |
+
assert self.fast_attn, "scaled_dot_product_attention Not implemented"
|
| 46 |
+
|
| 47 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 48 |
+
|
| 49 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
| 50 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
| 51 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 52 |
+
|
| 53 |
+
self.proj = nn.Linear(dim, dim)
|
| 54 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 55 |
+
|
| 56 |
+
def forward(self, x, node_mask):
|
| 57 |
+
B, N, D = x.shape
|
| 58 |
+
|
| 59 |
+
# B, head, N, head_dim
|
| 60 |
+
qkv = (
|
| 61 |
+
self.qkv(x)
|
| 62 |
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
| 63 |
+
.permute(2, 0, 3, 1, 4)
|
| 64 |
+
)
|
| 65 |
+
q, k, v = qkv.unbind(0) # B, head, N, head_dim
|
| 66 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
| 67 |
+
|
| 68 |
+
attn_mask = (node_mask[:, None, :, None] & node_mask[:, None, None, :]).expand(
|
| 69 |
+
-1, self.num_heads, N, N
|
| 70 |
+
)
|
| 71 |
+
extended_nodes = (attn_mask.sum(dim=-1) == 0)
|
| 72 |
+
attn_mask = attn_mask.clone()
|
| 73 |
+
attn_mask[extended_nodes] = True
|
| 74 |
+
|
| 75 |
+
x = F.scaled_dot_product_attention(
|
| 76 |
+
q,
|
| 77 |
+
k,
|
| 78 |
+
v,
|
| 79 |
+
dropout_p=self.attn_drop.p,
|
| 80 |
+
attn_mask=attn_mask,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
x = x.transpose(1, 2).reshape(B, N, -1)
|
| 84 |
+
# if no extended nodes, set the output to 0
|
| 85 |
+
# x[~node_mask] = 0
|
| 86 |
+
|
| 87 |
+
x = self.proj(x)
|
| 88 |
+
x = self.proj_drop(x)
|
| 89 |
+
|
| 90 |
+
return x
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class MLP(nn.Module):
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
in_features,
|
| 97 |
+
hidden_features=None,
|
| 98 |
+
out_features=None,
|
| 99 |
+
act_layer=nn.GELU,
|
| 100 |
+
bias=True,
|
| 101 |
+
drop=0.0,
|
| 102 |
+
):
|
| 103 |
+
super().__init__()
|
| 104 |
+
out_features = out_features or in_features
|
| 105 |
+
hidden_features = hidden_features or in_features
|
| 106 |
+
bias = to_2tuple(bias)
|
| 107 |
+
linear_layer = nn.Linear
|
| 108 |
+
|
| 109 |
+
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
|
| 110 |
+
self.act = act_layer()
|
| 111 |
+
self.drop1 = nn.Dropout(drop)
|
| 112 |
+
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
x = self.fc1(x)
|
| 116 |
+
x = self.act(x)
|
| 117 |
+
x = self.drop1(x)
|
| 118 |
+
x = self.fc2(x)
|
| 119 |
+
return x
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# From PyTorch internals
|
| 123 |
+
def _ntuple(n):
|
| 124 |
+
def parse(x):
|
| 125 |
+
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
| 126 |
+
return tuple(x)
|
| 127 |
+
return tuple(repeat(x, n))
|
| 128 |
+
|
| 129 |
+
return parse
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
to_2tuple = _ntuple(2)
|