File size: 12,951 Bytes
cf4feda
 
 
 
 
 
4801d40
cf4feda
 
 
 
 
 
 
 
6dbefd6
cf4feda
 
 
 
 
 
 
4801d40
cf4feda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f9d23
cf4feda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbefd6
 
 
 
cf4feda
 
 
 
 
 
 
96e1679
cf4feda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4bfeb8
cf4feda
 
 
 
b4bfeb8
cf4feda
 
 
 
 
73f5057
cf4feda
73f5057
cf4feda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f5057
 
 
cf4feda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f5057
cf4feda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5f9d23
cf4feda
 
 
 
 
 
 
 
 
438b334
 
 
 
 
12521d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf4feda
 
 
6dbefd6
cf4feda
 
 
 
 
2abec57
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import gradio as gr
import pandas as pd

def list_saved_results():
    """List all saved result files in the saved_results directory."""
    results_dir = os.path.join(".")
    if not os.path.exists(results_dir):
        return []
    
    result_files = [f for f in os.listdir(results_dir) if f.endswith(".pkl")]
    # Sort by modification time (newest first)
    result_files.sort(key=lambda x: os.path.getmtime(os.path.join(results_dir, x)), reverse=True)
    formatted_results = []
    for filename in result_files:
        formatted_results.append((filename, filename))
    
    return formatted_results

def load_saved_result(filename):
    """Load a saved result file."""
    import pickle
    
    results_dir = os.path.join(".")
    filepath = os.path.join(results_dir, filename)
    
    if not os.path.exists(filepath):
        return None
    
    with open(filepath, "rb") as f:
        results = pickle.load(f)
    
    return results

def show_examples(selected_vibe, results_dict, model_list_str=None):
    """Display example rows for the selected vibe."""
    if not selected_vibe:
        return "Please select a vibe to see examples.", []
    
    if not results_dict or "vibe_df" not in results_dict:
        return "No vibe data available.", []
    
    vibe_df = results_dict["vibe_df"]
    
    # Extract model names from the results dictionary or use provided models
    if model_list_str:
        models = [m.strip() for m in model_list_str.split(",") if m.strip()]
    else:
        models = results_dict.get("models", ["Model A", "Model B"])
    
    # Filter for the selected vibe
    subset = vibe_df[(vibe_df["vibe"] == selected_vibe)].head(10)
    
    # Create a list of example choices with preview text
    example_choices = []
    for i, row in enumerate(subset.itertuples(), 1):
        row = row._asdict()
        # Create a short preview of the prompt (first 100 chars)
        preview = row['question'][:100] + "..." if len(row['question']) > 100 else row['question']
        score = row['score']
        # Format: "Example 1: This is the prompt... (Score: 0.123)"
        label = f"Example {i}: {preview} (Score: {score:.3f})"
        example_choices.append(label)
    
    return gr.Dropdown(choices=example_choices, value=example_choices[0] if example_choices else None)

def display_selected_example(example_idx, selected_vibe, results_dict, model_list_str=None):
    """Display a single selected example."""
    if example_idx is None or not selected_vibe:
        return "Please select an example to view."
    
    if not results_dict or "vibe_df" not in results_dict:
        return "No vibe data available."
    
    vibe_df = results_dict["vibe_df"]
    
    # Extract model names from the results dictionary or use provided models
    if model_list_str:
        models = [m.strip() for m in model_list_str.split(",") if m.strip()]
    else:
        models = results_dict.get("models", ["Model A", "Model B"])
    
    # Filter for the selected vibe
    subset = vibe_df[
        (vibe_df["vibe"] == selected_vibe) & (vibe_df["score"].abs() > 0.0)
    ].head(10).to_dict(orient="records")  # Match the number in show_examples
    
    # Extract the example number from the dropdown selection
    try:
        # Parse the example number from the string (e.g., "Example 3: ...")
        example_num = int(example_idx.split(":")[0].replace("Example ", "")) - 1
        if example_num < 0 or example_num >= len(subset):
            return "Example index out of range."
    except (ValueError, AttributeError, IndexError):
        return f"Invalid example selection: '{example_idx}'"
    
    # Get the selected example
    row = subset[example_num]
    
    md = f"**Prompt:** {row['question']}\n\n"
    
    # Show both model outputs if available
    for model in models:
        if model in row:
            md += f"**{model} Output:**\n{row[model]}\n________________________\n"
    md += f"**Score:** {row['score']:.3f} "
    
    # Add interpretation of which model exhibits the vibe more
    if len(models) >= 2:
        if row["score"] > 0:
            md += f"({models[0]} exhibits this vibe more)\n\n"
        else:
            md += f"({models[1]} exhibits this vibe more)\n\n"
    
    return md

def create_vibecheck_results_ui():
    """
    Builds and returns a Gradio Blocks interface for viewing VibeCheck results
    """
    
    # Custom CSS for a more professional look
    custom_css = """
    .gradio-container {
        max-width: 1200px !important;
        margin: auto !important;
    }
    .header-text {
        text-align: center;
        margin-bottom: 1rem;
    }
    .header-emoji {
        font-size: 2.5rem;
        margin-right: 0.5rem;
    }
    .tab-content {
        padding: 1rem;
    }
    .footer {
        text-align: center;
        margin-top: 2rem;
        color: #666;
        font-size: 0.9rem;
    }
    """

    with gr.Blocks(theme='davehornik/Tealy', css=custom_css) as demo:
        gr.HTML("""
            <div class="header-text">
                <h1><span class="header-emoji">✨</span> LLM VibeChecks <span class="header-emoji">✨</span></h1>
                <p>Visualize the Vibes of model pairs using <a href="https://arxiv.org/abs/2410.12851" target="_blank" style="text-decoration: underline; color: inherit;">VibeCheck system</a> (more to come)</p>
            </div>
        """)
        
        with gr.Row():
            # Left Column - Selection
            with gr.Column(scale=1):
                # Dropdown to select saved results
                saved_results_dropdown = gr.Dropdown(
                    label="Select a dataset/model pair",
                    choices=list_saved_results(),
                    interactive=True,
                    allow_custom_value=False,
                )
                
                # Refresh button
                refresh_btn = gr.Button("Refresh List", variant="secondary")
                
                # Load button
                load_btn = gr.Button("Load Selected Results", variant="primary")
                
                # Status message
                load_status = gr.Markdown()
            
        # Output area
        with gr.Row():
            load_output_md = gr.Markdown()
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Vibe Score Heuristics\n\nVibes which have low scores are not used in prediction models")
                load_output_plot1 = gr.Plot()
            
        with gr.Row():
            with gr.Column():
                gr.Markdown("### Vibe Prediction Coefficients")
                load_output_plot2 = gr.Plot()

        # Bottom Row - Vibe Examples
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Explore Examples")
                load_vibe_dropdown = gr.Dropdown(
                    label="Select a vibe to see examples and their scores",
                    choices=[],
                    interactive=True,
                    multiselect=False,
                    value=None,
                    allow_custom_value=False,
                )
                load_example_dropdown = gr.Dropdown(
                    label="Select an example to view",
                    choices=[],
                    interactive=True,
                    multiselect=False,
                    value=None,
                    allow_custom_value=False,
                )
                load_examples_md = gr.Markdown()
        
        # Store loaded results state
        load_results_state = gr.State()
        
        # Function to refresh the list of saved results
        def refresh_saved_results():
            return gr.Dropdown(choices=list_saved_results())
        
        refresh_btn.click(
            fn=refresh_saved_results,
            inputs=[],
            outputs=[saved_results_dropdown]
        )
        
        # Function to load selected results
        def on_load_results(selected_result):
            if not selected_result:
                return "Please select a saved analysis to load.", None, None, None, None
            
            # Get the actual filename from the display name
            filename = selected_result[1] if isinstance(selected_result, tuple) else selected_result
            
            # Load the results
            results = load_saved_result(filename)
            
            if not results or "vibe_df" not in results:
                return "Failed to load results or invalid result file.", None, None, None, None

            model_names = results.get("models")
          
            accuracy_info = ""
            if "vibe_prediction_metrics" in results and results["vibe_prediction_metrics"]:
                metrics = results["vibe_prediction_metrics"]
                
                # Format identity metrics
                if "identity_metrics" in metrics:
                    id_metrics = metrics["identity_metrics"]
                    accuracy_info += f"\n\n### Model Identity Prediction\n"
                    accuracy_info += f"- Accuracy: {id_metrics.get('accuracy', 'N/A'):.3f} ± {id_metrics.get('acc_std', 'N/A'):.3f}\n"
                    if "acc_ci" in id_metrics:
                        accuracy_info += f"- 95% CI: [{id_metrics['acc_ci'][0]:.3f}, {id_metrics['acc_ci'][1]:.3f}]\n"
                
                # Format preference metrics
                if "preference_metrics" in metrics:
                    pref_metrics = metrics["preference_metrics"]
                    accuracy_info += f"\n### Preference Prediction\n"
                    accuracy_info += f"- Accuracy: {pref_metrics.get('accuracy', 'N/A'):.3f} ± {pref_metrics.get('acc_std', 'N/A'):.3f}\n"
                    if "acc_ci" in pref_metrics:
                        accuracy_info += f"- 95% CI: [{pref_metrics['acc_ci'][0]:.3f}, {pref_metrics['acc_ci'][1]:.3f}]\n"
            
            # Add model names to the summary
            model_info = f"\n\n**Models Compared: {' vs. '.join(model_names)}**\n\n"
            
            # Summarize
            summary_text = (
                "### Loaded VibeCheck Results\n"
                + model_info
                + f"**Found {len(results['vibe_df']['vibe'].unique())} vibe(s)**\n"
                + "\n".join(
                    [
                        f"- {vibe}"
                        for vibe in results["vibe_df"]["vibe"].unique().tolist()
                    ]
                )
                + accuracy_info
            )
            
            return (
                "Results loaded successfully!",
                summary_text,
                results["model_vibe_scores_plot"],
                results["score_dist_plot"],
                results,
                gr.Dropdown(choices=sorted(results["vibe_df"]["vibe"].unique().tolist()), 
                           value=sorted(results["vibe_df"]["vibe"].unique().tolist())[0] if results["vibe_df"]["vibe"].unique().tolist() else None)
            )
        
        load_btn.click(
            fn=on_load_results,
            inputs=[saved_results_dropdown],
            outputs=[
                load_status,
                load_output_md,
                load_output_plot1,
                load_output_plot2,
                load_results_state,
                load_vibe_dropdown,
            ],
        )
        
        # Show examples for selected vibe
        load_vibe_dropdown.change(
            fn=show_examples,
            inputs=[load_vibe_dropdown, load_results_state],
            outputs=[load_example_dropdown],
        )

        # Add handler for example dropdown
        load_example_dropdown.change(
            fn=display_selected_example,
            inputs=[load_example_dropdown, load_vibe_dropdown, load_results_state],
            outputs=[load_examples_md],
        )

        # Add a download button and file component
        with gr.Row():
            download_btn = gr.Button("Download DataFrame as CSV", variant="secondary")
            download_file = gr.File(label="Download CSV", interactive=False)

        # Function to convert DataFrame to CSV and return for download
        def download_dataframe(results_dict):
            if not results_dict or "df" not in results_dict:
                return None
            
            # Convert DataFrame to CSV
            csv_file_path = "vibecheck_results.csv"
            results_dict["df"].to_csv(csv_file_path, index=False)
            return csv_file_path

        # Connect the download button to the function
        download_btn.click(
            fn=download_dataframe,
            inputs=[load_results_state],
            outputs=[download_file]
        )

        # Add a footer
        gr.HTML("""
        <div class="footer">
            <p>© just some folks who like vibes</p>
        </div>
        """)

    return demo

app = create_vibecheck_results_ui()
app.launch()