Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import itertools | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from pytorch3d.structures import utils as struct_utils | |
from pytorch3d.structures.pointclouds import ( | |
join_pointclouds_as_batch, | |
join_pointclouds_as_scene, | |
Pointclouds, | |
) | |
from .common_testing import TestCaseMixin | |
class TestPointclouds(TestCaseMixin, unittest.TestCase): | |
def setUp(self) -> None: | |
np.random.seed(42) | |
torch.manual_seed(42) | |
def init_cloud( | |
num_clouds: int = 3, | |
max_points: int = 100, | |
channels: int = 4, | |
lists_to_tensors: bool = False, | |
with_normals: bool = True, | |
with_features: bool = True, | |
min_points: int = 0, | |
requires_grad: bool = False, | |
): | |
""" | |
Function to generate a Pointclouds object of N meshes with | |
random number of points. | |
Args: | |
num_clouds: Number of clouds to generate. | |
channels: Number of features. | |
max_points: Max number of points per cloud. | |
lists_to_tensors: Determines whether the generated clouds should be | |
constructed from lists (=False) or | |
tensors (=True) of points/normals/features. | |
with_normals: bool whether to include normals | |
with_features: bool whether to include features | |
min_points: Min number of points per cloud | |
Returns: | |
Pointclouds object. | |
""" | |
device = torch.device("cuda:0") | |
p = torch.randint(low=min_points, high=max_points, size=(num_clouds,)) | |
if lists_to_tensors: | |
p.fill_(p[0]) | |
points_list = [ | |
torch.rand( | |
(i, 3), device=device, dtype=torch.float32, requires_grad=requires_grad | |
) | |
for i in p | |
] | |
normals_list, features_list = None, None | |
if with_normals: | |
normals_list = [ | |
torch.rand( | |
(i, 3), | |
device=device, | |
dtype=torch.float32, | |
requires_grad=requires_grad, | |
) | |
for i in p | |
] | |
if with_features: | |
features_list = [ | |
torch.rand( | |
(i, channels), | |
device=device, | |
dtype=torch.float32, | |
requires_grad=requires_grad, | |
) | |
for i in p | |
] | |
if lists_to_tensors: | |
points_list = torch.stack(points_list) | |
if with_normals: | |
normals_list = torch.stack(normals_list) | |
if with_features: | |
features_list = torch.stack(features_list) | |
return Pointclouds(points_list, normals=normals_list, features=features_list) | |
def test_simple(self): | |
device = torch.device("cuda:0") | |
points = [ | |
torch.tensor( | |
[[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]], | |
dtype=torch.float32, | |
device=device, | |
), | |
torch.tensor( | |
[[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]], | |
dtype=torch.float32, | |
device=device, | |
), | |
torch.tensor( | |
[ | |
[0.7, 0.3, 0.6], | |
[0.2, 0.4, 0.8], | |
[0.9, 0.5, 0.2], | |
[0.2, 0.3, 0.4], | |
[0.9, 0.3, 0.8], | |
], | |
dtype=torch.float32, | |
device=device, | |
), | |
] | |
clouds = Pointclouds(points) | |
self.assertClose( | |
(clouds.packed_to_cloud_idx()).cpu(), | |
torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]), | |
) | |
self.assertClose( | |
clouds.cloud_to_packed_first_idx().cpu(), torch.tensor([0, 3, 7]) | |
) | |
self.assertClose(clouds.num_points_per_cloud().cpu(), torch.tensor([3, 4, 5])) | |
self.assertClose( | |
clouds.padded_to_packed_idx().cpu(), | |
torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]), | |
) | |
def test_init_error(self): | |
# Check if correct errors are raised when verts/faces are on | |
# different devices | |
clouds = self.init_cloud(10, 100, 5) | |
points_list = clouds.points_list() # all tensors on cuda:0 | |
points_list = [ | |
p.to("cpu") if random.uniform(0, 1) > 0.5 else p for p in points_list | |
] | |
features_list = clouds.features_list() | |
normals_list = clouds.normals_list() | |
with self.assertRaisesRegex(ValueError, "same device"): | |
Pointclouds( | |
points=points_list, features=features_list, normals=normals_list | |
) | |
points_list = clouds.points_list() | |
features_list = [ | |
f.to("cpu") if random.uniform(0, 1) > 0.2 else f for f in features_list | |
] | |
with self.assertRaisesRegex(ValueError, "same device"): | |
Pointclouds( | |
points=points_list, features=features_list, normals=normals_list | |
) | |
points_padded = clouds.points_padded() # on cuda:0 | |
features_padded = clouds.features_padded().to("cpu") | |
normals_padded = clouds.normals_padded() | |
with self.assertRaisesRegex(ValueError, "same device"): | |
Pointclouds( | |
points=points_padded, features=features_padded, normals=normals_padded | |
) | |
def test_all_constructions(self): | |
public_getters = [ | |
"points_list", | |
"points_packed", | |
"packed_to_cloud_idx", | |
"cloud_to_packed_first_idx", | |
"num_points_per_cloud", | |
"points_padded", | |
"padded_to_packed_idx", | |
] | |
public_normals_getters = ["normals_list", "normals_packed", "normals_padded"] | |
public_features_getters = [ | |
"features_list", | |
"features_packed", | |
"features_padded", | |
] | |
lengths = [3, 4, 2] | |
max_len = max(lengths) | |
C = 4 | |
points_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths] | |
normals_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths] | |
features_data = [torch.zeros((max_len, C)).uniform_() for i in lengths] | |
for length, p, n, f in zip(lengths, points_data, normals_data, features_data): | |
p[length:] = 0.0 | |
n[length:] = 0.0 | |
f[length:] = 0.0 | |
points_list = [d[:length] for length, d in zip(lengths, points_data)] | |
normals_list = [d[:length] for length, d in zip(lengths, normals_data)] | |
features_list = [d[:length] for length, d in zip(lengths, features_data)] | |
points_packed = torch.cat(points_data) | |
normals_packed = torch.cat(normals_data) | |
features_packed = torch.cat(features_data) | |
test_cases_inputs = [ | |
("list_0_0", points_list, None, None), | |
("list_1_0", points_list, normals_list, None), | |
("list_0_1", points_list, None, features_list), | |
("list_1_1", points_list, normals_list, features_list), | |
("padded_0_0", points_data, None, None), | |
("padded_1_0", points_data, normals_data, None), | |
("padded_0_1", points_data, None, features_data), | |
("padded_1_1", points_data, normals_data, features_data), | |
("emptylist_emptylist_emptylist", [], [], []), | |
] | |
false_cases_inputs = [ | |
("list_packed", points_list, normals_packed, features_packed, ValueError), | |
("packed_0", points_packed, None, None, ValueError), | |
] | |
for name, points, normals, features in test_cases_inputs: | |
with self.subTest(name=name): | |
p = Pointclouds(points, normals, features) | |
for method in public_getters: | |
self.assertIsNotNone(getattr(p, method)()) | |
for method in public_normals_getters: | |
if normals is None or p.isempty(): | |
self.assertIsNone(getattr(p, method)()) | |
for method in public_features_getters: | |
if features is None or p.isempty(): | |
self.assertIsNone(getattr(p, method)()) | |
for name, points, normals, features, error in false_cases_inputs: | |
with self.subTest(name=name): | |
with self.assertRaises(error): | |
Pointclouds(points, normals, features) | |
def test_simple_random_clouds(self): | |
# Define the test object either from lists or tensors. | |
for with_normals in (False, True): | |
for with_features in (False, True): | |
for lists_to_tensors in (False, True): | |
N = 10 | |
cloud = self.init_cloud( | |
N, | |
lists_to_tensors=lists_to_tensors, | |
with_normals=with_normals, | |
with_features=with_features, | |
) | |
points_list = cloud.points_list() | |
normals_list = cloud.normals_list() | |
features_list = cloud.features_list() | |
# Check batch calculations. | |
points_padded = cloud.points_padded() | |
normals_padded = cloud.normals_padded() | |
features_padded = cloud.features_padded() | |
points_per_cloud = cloud.num_points_per_cloud() | |
if not with_normals: | |
self.assertIsNone(normals_list) | |
self.assertIsNone(normals_padded) | |
if not with_features: | |
self.assertIsNone(features_list) | |
self.assertIsNone(features_padded) | |
for n in range(N): | |
p = points_list[n].shape[0] | |
self.assertClose(points_padded[n, :p, :], points_list[n]) | |
if with_normals: | |
norms = normals_list[n].shape[0] | |
self.assertEqual(p, norms) | |
self.assertClose(normals_padded[n, :p, :], normals_list[n]) | |
if with_features: | |
f = features_list[n].shape[0] | |
self.assertEqual(p, f) | |
self.assertClose( | |
features_padded[n, :p, :], features_list[n] | |
) | |
if points_padded.shape[1] > p: | |
self.assertTrue(points_padded[n, p:, :].eq(0).all()) | |
if with_features: | |
self.assertTrue(features_padded[n, p:, :].eq(0).all()) | |
self.assertEqual(points_per_cloud[n], p) | |
# Check compute packed. | |
points_packed = cloud.points_packed() | |
packed_to_cloud = cloud.packed_to_cloud_idx() | |
cloud_to_packed = cloud.cloud_to_packed_first_idx() | |
normals_packed = cloud.normals_packed() | |
features_packed = cloud.features_packed() | |
if not with_normals: | |
self.assertIsNone(normals_packed) | |
if not with_features: | |
self.assertIsNone(features_packed) | |
cur = 0 | |
for n in range(N): | |
p = points_list[n].shape[0] | |
self.assertClose( | |
points_packed[cur : cur + p, :], points_list[n] | |
) | |
if with_normals: | |
self.assertClose( | |
normals_packed[cur : cur + p, :], normals_list[n] | |
) | |
if with_features: | |
self.assertClose( | |
features_packed[cur : cur + p, :], features_list[n] | |
) | |
self.assertTrue(packed_to_cloud[cur : cur + p].eq(n).all()) | |
self.assertTrue(cloud_to_packed[n] == cur) | |
cur += p | |
def test_allempty(self): | |
clouds = Pointclouds([], []) | |
self.assertEqual(len(clouds), 0) | |
self.assertIsNone(clouds.normals_list()) | |
self.assertIsNone(clouds.features_list()) | |
self.assertEqual(clouds.points_padded().shape[0], 0) | |
self.assertIsNone(clouds.normals_padded()) | |
self.assertIsNone(clouds.features_padded()) | |
self.assertEqual(clouds.points_packed().shape[0], 0) | |
self.assertIsNone(clouds.normals_packed()) | |
self.assertIsNone(clouds.features_packed()) | |
def test_empty(self): | |
N, P, C = 10, 100, 2 | |
device = torch.device("cuda:0") | |
points_list = [] | |
normals_list = [] | |
features_list = [] | |
valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device) | |
for n in range(N): | |
if valid[n]: | |
p = torch.randint( | |
3, high=P, size=(1,), dtype=torch.int32, device=device | |
)[0] | |
points = torch.rand((p, 3), dtype=torch.float32, device=device) | |
normals = torch.rand((p, 3), dtype=torch.float32, device=device) | |
features = torch.rand((p, C), dtype=torch.float32, device=device) | |
else: | |
points = torch.tensor([], dtype=torch.float32, device=device) | |
normals = torch.tensor([], dtype=torch.float32, device=device) | |
features = torch.tensor([], dtype=torch.int64, device=device) | |
points_list.append(points) | |
normals_list.append(normals) | |
features_list.append(features) | |
for with_normals in (False, True): | |
for with_features in (False, True): | |
this_features, this_normals = None, None | |
if with_normals: | |
this_normals = normals_list | |
if with_features: | |
this_features = features_list | |
clouds = Pointclouds( | |
points=points_list, normals=this_normals, features=this_features | |
) | |
points_padded = clouds.points_padded() | |
normals_padded = clouds.normals_padded() | |
features_padded = clouds.features_padded() | |
if not with_normals: | |
self.assertIsNone(normals_padded) | |
if not with_features: | |
self.assertIsNone(features_padded) | |
points_per_cloud = clouds.num_points_per_cloud() | |
for n in range(N): | |
p = len(points_list[n]) | |
if p > 0: | |
self.assertClose(points_padded[n, :p, :], points_list[n]) | |
if with_normals: | |
self.assertClose(normals_padded[n, :p, :], normals_list[n]) | |
if with_features: | |
self.assertClose( | |
features_padded[n, :p, :], features_list[n] | |
) | |
if points_padded.shape[1] > p: | |
self.assertTrue(points_padded[n, p:, :].eq(0).all()) | |
if with_normals: | |
self.assertTrue(normals_padded[n, p:, :].eq(0).all()) | |
if with_features: | |
self.assertTrue(features_padded[n, p:, :].eq(0).all()) | |
self.assertTrue(points_per_cloud[n] == p) | |
def test_list_someempty(self): | |
# We want | |
# point_cloud = Pointclouds( | |
# [pcl.points_packed() for pcl in point_clouds], | |
# features=[pcl.features_packed() for pcl in point_clouds], | |
# ) | |
# to work if point_clouds is a list of pointclouds with some empty and some not. | |
points_list = [torch.rand(30, 3), torch.zeros(0, 3)] | |
features_list = [torch.rand(30, 3), None] | |
pcls = Pointclouds(points=points_list, features=features_list) | |
self.assertEqual(len(pcls), 2) | |
self.assertClose( | |
pcls.points_padded(), | |
torch.stack([points_list[0], torch.zeros_like(points_list[0])]), | |
) | |
self.assertClose(pcls.points_packed(), points_list[0]) | |
self.assertClose( | |
pcls.features_padded(), | |
torch.stack([features_list[0], torch.zeros_like(points_list[0])]), | |
) | |
self.assertClose(pcls.features_packed(), features_list[0]) | |
points_list = [torch.zeros(0, 3), torch.rand(30, 3)] | |
features_list = [None, torch.rand(30, 3)] | |
pcls = Pointclouds(points=points_list, features=features_list) | |
self.assertEqual(len(pcls), 2) | |
self.assertClose( | |
pcls.points_padded(), | |
torch.stack([torch.zeros_like(points_list[1]), points_list[1]]), | |
) | |
self.assertClose(pcls.points_packed(), points_list[1]) | |
self.assertClose( | |
pcls.features_padded(), | |
torch.stack([torch.zeros_like(points_list[1]), features_list[1]]), | |
) | |
self.assertClose(pcls.features_packed(), features_list[1]) | |
def test_clone_list(self): | |
N = 5 | |
clouds = self.init_cloud(N, 100, 5) | |
for force in (False, True): | |
if force: | |
clouds.points_packed() | |
new_clouds = clouds.clone() | |
# Check cloned and original objects do not share tensors. | |
self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0]) | |
self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0]) | |
self.assertSeparate( | |
new_clouds.features_list()[0], clouds.features_list()[0] | |
) | |
for attrib in [ | |
"points_packed", | |
"normals_packed", | |
"features_packed", | |
"points_padded", | |
"normals_padded", | |
"features_padded", | |
]: | |
self.assertSeparate( | |
getattr(new_clouds, attrib)(), getattr(clouds, attrib)() | |
) | |
self.assertCloudsEqual(clouds, new_clouds) | |
def test_clone_tensor(self): | |
N = 5 | |
clouds = self.init_cloud(N, 100, 5, lists_to_tensors=True) | |
for force in (False, True): | |
if force: | |
clouds.points_packed() | |
new_clouds = clouds.clone() | |
# Check cloned and original objects do not share tensors. | |
self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0]) | |
self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0]) | |
self.assertSeparate( | |
new_clouds.features_list()[0], clouds.features_list()[0] | |
) | |
for attrib in [ | |
"points_packed", | |
"normals_packed", | |
"features_packed", | |
"points_padded", | |
"normals_padded", | |
"features_padded", | |
]: | |
self.assertSeparate( | |
getattr(new_clouds, attrib)(), getattr(clouds, attrib)() | |
) | |
self.assertCloudsEqual(clouds, new_clouds) | |
def test_detach(self): | |
N = 5 | |
for lists_to_tensors in (True, False): | |
clouds = self.init_cloud( | |
N, 100, 5, lists_to_tensors=lists_to_tensors, requires_grad=True | |
) | |
for force in (False, True): | |
if force: | |
clouds.points_packed() | |
new_clouds = clouds.detach() | |
for cloud in new_clouds.points_list(): | |
self.assertFalse(cloud.requires_grad) | |
for normal in new_clouds.normals_list(): | |
self.assertFalse(normal.requires_grad) | |
for feats in new_clouds.features_list(): | |
self.assertFalse(feats.requires_grad) | |
for attrib in [ | |
"points_packed", | |
"normals_packed", | |
"features_packed", | |
"points_padded", | |
"normals_padded", | |
"features_padded", | |
]: | |
self.assertFalse(getattr(new_clouds, attrib)().requires_grad) | |
self.assertCloudsEqual(clouds, new_clouds) | |
def assertCloudsEqual(self, cloud1, cloud2): | |
N = len(cloud1) | |
self.assertEqual(N, len(cloud2)) | |
for i in range(N): | |
self.assertClose(cloud1.points_list()[i], cloud2.points_list()[i]) | |
self.assertClose(cloud1.normals_list()[i], cloud2.normals_list()[i]) | |
self.assertClose(cloud1.features_list()[i], cloud2.features_list()[i]) | |
has_normals = cloud1.normals_list() is not None | |
self.assertTrue(has_normals == (cloud2.normals_list() is not None)) | |
has_features = cloud1.features_list() is not None | |
self.assertTrue(has_features == (cloud2.features_list() is not None)) | |
# check padded & packed | |
self.assertClose(cloud1.points_padded(), cloud2.points_padded()) | |
self.assertClose(cloud1.points_packed(), cloud2.points_packed()) | |
if has_normals: | |
self.assertClose(cloud1.normals_padded(), cloud2.normals_padded()) | |
self.assertClose(cloud1.normals_packed(), cloud2.normals_packed()) | |
if has_features: | |
self.assertClose(cloud1.features_padded(), cloud2.features_padded()) | |
self.assertClose(cloud1.features_packed(), cloud2.features_packed()) | |
self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx()) | |
self.assertClose( | |
cloud1.cloud_to_packed_first_idx(), cloud2.cloud_to_packed_first_idx() | |
) | |
self.assertClose(cloud1.num_points_per_cloud(), cloud2.num_points_per_cloud()) | |
self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx()) | |
self.assertClose(cloud1.padded_to_packed_idx(), cloud2.padded_to_packed_idx()) | |
self.assertTrue(all(cloud1.valid == cloud2.valid)) | |
self.assertTrue(cloud1.equisized == cloud2.equisized) | |
def test_offset(self): | |
def naive_offset(clouds, offsets_packed): | |
new_points_packed = clouds.points_packed() + offsets_packed | |
new_points_list = list( | |
new_points_packed.split(clouds.num_points_per_cloud().tolist(), 0) | |
) | |
return Pointclouds( | |
points=new_points_list, | |
normals=clouds.normals_list(), | |
features=clouds.features_list(), | |
) | |
N = 5 | |
clouds = self.init_cloud(N, 100, 10) | |
all_p = clouds.points_packed().size(0) | |
points_per_cloud = clouds.num_points_per_cloud() | |
for force, deform_shape in itertools.product((0, 1), [(all_p, 3), 3]): | |
if force: | |
clouds._compute_packed(refresh=True) | |
clouds._compute_padded() | |
clouds.padded_to_packed_idx() | |
deform = torch.rand(deform_shape, dtype=torch.float32, device=clouds.device) | |
new_clouds_naive = naive_offset(clouds, deform) | |
new_clouds = clouds.offset(deform) | |
points_cumsum = torch.cumsum(points_per_cloud, 0).tolist() | |
points_cumsum.insert(0, 0) | |
for i in range(N): | |
item_offset = ( | |
deform | |
if deform.ndim == 1 | |
else deform[points_cumsum[i] : points_cumsum[i + 1]] | |
) | |
self.assertClose( | |
new_clouds.points_list()[i], | |
clouds.points_list()[i] + item_offset, | |
) | |
self.assertClose( | |
clouds.normals_list()[i], new_clouds_naive.normals_list()[i] | |
) | |
self.assertClose( | |
clouds.features_list()[i], new_clouds_naive.features_list()[i] | |
) | |
self.assertCloudsEqual(new_clouds, new_clouds_naive) | |
def test_scale(self): | |
def naive_scale(cloud, scale): | |
if not torch.is_tensor(scale): | |
scale = torch.full((len(cloud),), scale, device=cloud.device) | |
new_points_list = [ | |
scale[i] * points.clone() | |
for (i, points) in enumerate(cloud.points_list()) | |
] | |
return Pointclouds( | |
new_points_list, cloud.normals_list(), cloud.features_list() | |
) | |
N = 5 | |
for test in ["tensor", "scalar"]: | |
for force in (False, True): | |
clouds = self.init_cloud(N, 100, 10) | |
if force: | |
clouds._compute_packed(refresh=True) | |
clouds._compute_padded() | |
clouds.padded_to_packed_idx() | |
if test == "tensor": | |
scales = torch.rand(N) | |
elif test == "scalar": | |
scales = torch.rand(1)[0].item() | |
new_clouds_naive = naive_scale(clouds, scales) | |
new_clouds = clouds.scale(scales) | |
for i in range(N): | |
if test == "tensor": | |
self.assertClose( | |
scales[i] * clouds.points_list()[i], | |
new_clouds.points_list()[i], | |
) | |
else: | |
self.assertClose( | |
scales * clouds.points_list()[i], | |
new_clouds.points_list()[i], | |
) | |
self.assertClose( | |
clouds.normals_list()[i], new_clouds_naive.normals_list()[i] | |
) | |
self.assertClose( | |
clouds.features_list()[i], new_clouds_naive.features_list()[i] | |
) | |
self.assertCloudsEqual(new_clouds, new_clouds_naive) | |
def test_extend_list(self): | |
N = 10 | |
clouds = self.init_cloud(N, 100, 10) | |
for force in (False, True): | |
if force: | |
# force some computes to happen | |
clouds._compute_packed(refresh=True) | |
clouds._compute_padded() | |
clouds.padded_to_packed_idx() | |
new_clouds = clouds.extend(N) | |
self.assertEqual(len(clouds) * 10, len(new_clouds)) | |
for i in range(len(clouds)): | |
for n in range(N): | |
self.assertClose( | |
clouds.points_list()[i], new_clouds.points_list()[i * N + n] | |
) | |
self.assertClose( | |
clouds.normals_list()[i], new_clouds.normals_list()[i * N + n] | |
) | |
self.assertClose( | |
clouds.features_list()[i], new_clouds.features_list()[i * N + n] | |
) | |
self.assertTrue(clouds.valid[i] == new_clouds.valid[i * N + n]) | |
self.assertAllSeparate( | |
clouds.points_list() | |
+ new_clouds.points_list() | |
+ clouds.normals_list() | |
+ new_clouds.normals_list() | |
+ clouds.features_list() | |
+ new_clouds.features_list() | |
) | |
self.assertIsNone(new_clouds._points_packed) | |
self.assertIsNone(new_clouds._normals_packed) | |
self.assertIsNone(new_clouds._features_packed) | |
self.assertIsNone(new_clouds._points_padded) | |
self.assertIsNone(new_clouds._normals_padded) | |
self.assertIsNone(new_clouds._features_padded) | |
with self.assertRaises(ValueError): | |
clouds.extend(N=-1) | |
def test_to(self): | |
cloud = self.init_cloud(5, 100, 10) # Using device "cuda:0" | |
cuda_device = torch.device("cuda:0") | |
converted_cloud = cloud.to("cuda:0") | |
self.assertEqual(cuda_device, converted_cloud.device) | |
self.assertEqual(cuda_device, cloud.device) | |
self.assertIs(cloud, converted_cloud) | |
converted_cloud = cloud.to(cuda_device) | |
self.assertEqual(cuda_device, converted_cloud.device) | |
self.assertEqual(cuda_device, cloud.device) | |
self.assertIs(cloud, converted_cloud) | |
cpu_device = torch.device("cpu") | |
converted_cloud = cloud.to("cpu") | |
self.assertEqual(cpu_device, converted_cloud.device) | |
self.assertEqual(cuda_device, cloud.device) | |
self.assertIsNot(cloud, converted_cloud) | |
converted_cloud = cloud.to(cpu_device) | |
self.assertEqual(cpu_device, converted_cloud.device) | |
self.assertEqual(cuda_device, cloud.device) | |
self.assertIsNot(cloud, converted_cloud) | |
def test_to_list(self): | |
cloud = self.init_cloud(5, 100, 10) | |
device = torch.device("cuda:1") | |
new_cloud = cloud.to(device) | |
self.assertTrue(new_cloud.device == device) | |
self.assertTrue(cloud.device == torch.device("cuda:0")) | |
for attrib in [ | |
"points_padded", | |
"points_packed", | |
"normals_padded", | |
"normals_packed", | |
"features_padded", | |
"features_packed", | |
"num_points_per_cloud", | |
"cloud_to_packed_first_idx", | |
"padded_to_packed_idx", | |
]: | |
self.assertClose( | |
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu() | |
) | |
for i in range(len(cloud)): | |
self.assertClose( | |
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu() | |
) | |
self.assertClose( | |
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu() | |
) | |
self.assertClose( | |
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu() | |
) | |
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu())) | |
self.assertTrue(cloud.equisized == new_cloud.equisized) | |
self.assertTrue(cloud._N == new_cloud._N) | |
self.assertTrue(cloud._P == new_cloud._P) | |
self.assertTrue(cloud._C == new_cloud._C) | |
def test_to_tensor(self): | |
cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True) | |
device = torch.device("cuda:1") | |
new_cloud = cloud.to(device) | |
self.assertTrue(new_cloud.device == device) | |
self.assertTrue(cloud.device == torch.device("cuda:0")) | |
for attrib in [ | |
"points_padded", | |
"points_packed", | |
"normals_padded", | |
"normals_packed", | |
"features_padded", | |
"features_packed", | |
"num_points_per_cloud", | |
"cloud_to_packed_first_idx", | |
"padded_to_packed_idx", | |
]: | |
self.assertClose( | |
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu() | |
) | |
for i in range(len(cloud)): | |
self.assertClose( | |
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu() | |
) | |
self.assertClose( | |
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu() | |
) | |
self.assertClose( | |
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu() | |
) | |
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu())) | |
self.assertTrue(cloud.equisized == new_cloud.equisized) | |
self.assertTrue(cloud._N == new_cloud._N) | |
self.assertTrue(cloud._P == new_cloud._P) | |
self.assertTrue(cloud._C == new_cloud._C) | |
def test_split(self): | |
clouds = self.init_cloud(5, 100, 10) | |
split_sizes = [2, 3] | |
split_clouds = clouds.split(split_sizes) | |
self.assertEqual(len(split_clouds[0]), 2) | |
self.assertTrue( | |
split_clouds[0].points_list() | |
== [clouds.get_cloud(0)[0], clouds.get_cloud(1)[0]] | |
) | |
self.assertEqual(len(split_clouds[1]), 3) | |
self.assertTrue( | |
split_clouds[1].points_list() | |
== [clouds.get_cloud(2)[0], clouds.get_cloud(3)[0], clouds.get_cloud(4)[0]] | |
) | |
split_sizes = [2, 0.3] | |
with self.assertRaises(ValueError): | |
clouds.split(split_sizes) | |
def test_get_cloud(self): | |
clouds = self.init_cloud(2, 100, 10) | |
for i in range(len(clouds)): | |
points, normals, features = clouds.get_cloud(i) | |
self.assertClose(points, clouds.points_list()[i]) | |
self.assertClose(normals, clouds.normals_list()[i]) | |
self.assertClose(features, clouds.features_list()[i]) | |
with self.assertRaises(ValueError): | |
clouds.get_cloud(5) | |
with self.assertRaises(ValueError): | |
clouds.get_cloud(0.2) | |
def test_get_bounding_boxes(self): | |
device = torch.device("cuda:0") | |
points_list = [] | |
for size in [10]: | |
points = torch.rand((size, 3), dtype=torch.float32, device=device) | |
points_list.append(points) | |
mins = torch.min(points, dim=0)[0] | |
maxs = torch.max(points, dim=0)[0] | |
bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0) | |
clouds = Pointclouds(points_list) | |
bboxes = clouds.get_bounding_boxes() | |
self.assertClose(bboxes_gt, bboxes) | |
def test_padded_to_packed_idx(self): | |
device = torch.device("cuda:0") | |
points_list = [] | |
npoints = [10, 20, 30] | |
for p in npoints: | |
points = torch.rand((p, 3), dtype=torch.float32, device=device) | |
points_list.append(points) | |
clouds = Pointclouds(points_list) | |
padded_to_packed_idx = clouds.padded_to_packed_idx() | |
points_packed = clouds.points_packed() | |
points_padded = clouds.points_padded() | |
points_padded_flat = points_padded.view(-1, 3) | |
self.assertClose(points_padded_flat[padded_to_packed_idx], points_packed) | |
idx = padded_to_packed_idx.view(-1, 1).expand(-1, 3) | |
self.assertClose(points_padded_flat.gather(0, idx), points_packed) | |
def test_getitem(self): | |
device = torch.device("cuda:0") | |
clouds = self.init_cloud(3, 10, 100) | |
def check_equal(selected, indices): | |
for selectedIdx, index in indices: | |
self.assertClose( | |
selected.points_list()[selectedIdx], clouds.points_list()[index] | |
) | |
self.assertClose( | |
selected.normals_list()[selectedIdx], clouds.normals_list()[index] | |
) | |
self.assertClose( | |
selected.features_list()[selectedIdx], clouds.features_list()[index] | |
) | |
# int index | |
index = 1 | |
clouds_selected = clouds[index] | |
self.assertEqual(len(clouds_selected), 1) | |
check_equal(clouds_selected, [(0, 1)]) | |
# list index | |
index = [1, 2] | |
clouds_selected = clouds[index] | |
self.assertEqual(len(clouds_selected), len(index)) | |
check_equal(clouds_selected, enumerate(index)) | |
# slice index | |
index = slice(0, 2, 1) | |
clouds_selected = clouds[index] | |
self.assertEqual(len(clouds_selected), 2) | |
check_equal(clouds_selected, [(0, 0), (1, 1)]) | |
# bool tensor | |
index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device) | |
clouds_selected = clouds[index] | |
self.assertEqual(len(clouds_selected), index.sum()) | |
check_equal(clouds_selected, [(0, 0), (1, 2)]) | |
# int tensor | |
index = torch.tensor([1, 2], dtype=torch.int64, device=device) | |
clouds_selected = clouds[index] | |
self.assertEqual(len(clouds_selected), index.numel()) | |
check_equal(clouds_selected, enumerate(index.tolist())) | |
# invalid index | |
index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device) | |
with self.assertRaises(IndexError): | |
clouds_selected = clouds[index] | |
index = 1.2 | |
with self.assertRaises(IndexError): | |
clouds_selected = clouds[index] | |
def test_update_padded(self): | |
N, P, C = 5, 100, 4 | |
for with_normfeat in (True, False): | |
for with_new_normfeat in (True, False): | |
clouds = self.init_cloud( | |
N, P, C, with_normals=with_normfeat, with_features=with_normfeat | |
) | |
num_points_per_cloud = clouds.num_points_per_cloud() | |
# initialize new points, normals, features | |
new_points = torch.rand( | |
clouds.points_padded().shape, device=clouds.device | |
) | |
new_points_list = [ | |
new_points[i, : num_points_per_cloud[i]] for i in range(N) | |
] | |
new_normals, new_normals_list = None, None | |
new_features, new_features_list = None, None | |
if with_new_normfeat: | |
new_normals = torch.rand( | |
clouds.points_padded().shape, device=clouds.device | |
) | |
new_normals_list = [ | |
new_normals[i, : num_points_per_cloud[i]] for i in range(N) | |
] | |
feat_shape = [ | |
clouds.points_padded().shape[0], | |
clouds.points_padded().shape[1], | |
C, | |
] | |
new_features = torch.rand(feat_shape, device=clouds.device) | |
new_features_list = [ | |
new_features[i, : num_points_per_cloud[i]] for i in range(N) | |
] | |
# update | |
new_clouds = clouds.update_padded(new_points, new_normals, new_features) | |
self.assertIsNone(new_clouds._points_list) | |
self.assertIsNone(new_clouds._points_packed) | |
self.assertEqual(new_clouds.equisized, clouds.equisized) | |
self.assertTrue(all(new_clouds.valid == clouds.valid)) | |
self.assertClose(new_clouds.points_padded(), new_points) | |
self.assertClose(new_clouds.points_packed(), torch.cat(new_points_list)) | |
for i in range(N): | |
self.assertClose(new_clouds.points_list()[i], new_points_list[i]) | |
if with_new_normfeat: | |
for i in range(N): | |
self.assertClose( | |
new_clouds.normals_list()[i], new_normals_list[i] | |
) | |
self.assertClose( | |
new_clouds.features_list()[i], new_features_list[i] | |
) | |
self.assertClose(new_clouds.normals_padded(), new_normals) | |
self.assertClose( | |
new_clouds.normals_packed(), torch.cat(new_normals_list) | |
) | |
self.assertClose(new_clouds.features_padded(), new_features) | |
self.assertClose( | |
new_clouds.features_packed(), torch.cat(new_features_list) | |
) | |
else: | |
if with_normfeat: | |
for i in range(N): | |
self.assertClose( | |
new_clouds.normals_list()[i], clouds.normals_list()[i] | |
) | |
self.assertClose( | |
new_clouds.features_list()[i], clouds.features_list()[i] | |
) | |
self.assertNotSeparate( | |
new_clouds.normals_list()[i], clouds.normals_list()[i] | |
) | |
self.assertNotSeparate( | |
new_clouds.features_list()[i], clouds.features_list()[i] | |
) | |
self.assertClose( | |
new_clouds.normals_padded(), clouds.normals_padded() | |
) | |
self.assertClose( | |
new_clouds.normals_packed(), clouds.normals_packed() | |
) | |
self.assertClose( | |
new_clouds.features_padded(), clouds.features_padded() | |
) | |
self.assertClose( | |
new_clouds.features_packed(), clouds.features_packed() | |
) | |
self.assertNotSeparate( | |
new_clouds.normals_padded(), clouds.normals_padded() | |
) | |
self.assertNotSeparate( | |
new_clouds.features_padded(), clouds.features_padded() | |
) | |
else: | |
self.assertIsNone(new_clouds.normals_list()) | |
self.assertIsNone(new_clouds.features_list()) | |
self.assertIsNone(new_clouds.normals_padded()) | |
self.assertIsNone(new_clouds.features_padded()) | |
self.assertIsNone(new_clouds.normals_packed()) | |
self.assertIsNone(new_clouds.features_packed()) | |
for attrib in [ | |
"num_points_per_cloud", | |
"cloud_to_packed_first_idx", | |
"padded_to_packed_idx", | |
]: | |
self.assertClose( | |
getattr(new_clouds, attrib)(), getattr(clouds, attrib)() | |
) | |
def test_inside_box(self): | |
def inside_box_naive(cloud, box_min, box_max): | |
return ((cloud >= box_min.view(1, 3)) * (cloud <= box_max.view(1, 3))).all( | |
dim=-1 | |
) | |
N, P, C = 5, 100, 4 | |
clouds = self.init_cloud(N, P, C, with_normals=False, with_features=False) | |
device = clouds.device | |
# box of shape Nx2x3 | |
box_min = torch.rand((N, 1, 3), device=device) | |
box_max = box_min + torch.rand((N, 1, 3), device=device) | |
box = torch.cat([box_min, box_max], dim=1) | |
within_box = clouds.inside_box(box) | |
within_box_naive = [] | |
for i, cloud in enumerate(clouds.points_list()): | |
within_box_naive.append(inside_box_naive(cloud, box[i, 0], box[i, 1])) | |
within_box_naive = torch.cat(within_box_naive, 0) | |
self.assertTrue(torch.equal(within_box, within_box_naive)) | |
# box of shape 2x3 | |
box2 = box[0, :] | |
within_box2 = clouds.inside_box(box2) | |
within_box_naive2 = [] | |
for cloud in clouds.points_list(): | |
within_box_naive2.append(inside_box_naive(cloud, box2[0], box2[1])) | |
within_box_naive2 = torch.cat(within_box_naive2, 0) | |
self.assertTrue(torch.equal(within_box2, within_box_naive2)) | |
# box of shape 1x2x3 | |
box3 = box2.expand(1, 2, 3) | |
within_box3 = clouds.inside_box(box3) | |
self.assertTrue(torch.equal(within_box2, within_box3)) | |
# invalid box | |
invalid_box = torch.cat( | |
[box_min, box_min - torch.rand((N, 1, 3), device=device)], dim=1 | |
) | |
with self.assertRaisesRegex(ValueError, "Input box is invalid"): | |
clouds.inside_box(invalid_box) | |
# invalid box shapes | |
invalid_box = box[0].expand(2, 2, 3) | |
with self.assertRaisesRegex(ValueError, "Input box dimension is"): | |
clouds.inside_box(invalid_box) | |
invalid_box = torch.rand((5, 8, 9, 3), device=device) | |
with self.assertRaisesRegex(ValueError, "Input box must be of shape"): | |
clouds.inside_box(invalid_box) | |
def test_estimate_normals(self): | |
for with_normals in (True, False): | |
for run_padded in (True, False): | |
for run_packed in (True, False): | |
clouds = TestPointclouds.init_cloud( | |
3, | |
100, | |
with_normals=with_normals, | |
with_features=False, | |
min_points=60, | |
) | |
nums = clouds.num_points_per_cloud() | |
if run_padded: | |
clouds.points_padded() | |
if run_packed: | |
clouds.points_packed() | |
normals_est_padded = clouds.estimate_normals(assign_to_self=True) | |
normals_est_list = struct_utils.padded_to_list( | |
normals_est_padded, nums.tolist() | |
) | |
self.assertClose(clouds.normals_padded(), normals_est_padded) | |
for i in range(len(clouds)): | |
self.assertClose(clouds.normals_list()[i], normals_est_list[i]) | |
self.assertClose( | |
clouds.normals_packed(), torch.cat(normals_est_list, dim=0) | |
) | |
def test_subsample(self): | |
lengths = [4, 5, 13, 3] | |
points = [torch.rand(length, 3) for length in lengths] | |
features = [torch.rand(length, 5) for length in lengths] | |
normals = [torch.rand(length, 3) for length in lengths] | |
pcl1 = Pointclouds(points=points).cuda() | |
self.assertIs(pcl1, pcl1.subsample(13)) | |
self.assertIs(pcl1, pcl1.subsample([6, 13, 13, 13])) | |
lengths_max_4 = torch.tensor([4, 4, 4, 3]).cuda() | |
for with_normals, with_features in itertools.product([True, False], repeat=2): | |
with self.subTest(f"{with_normals} {with_features}"): | |
pcl = Pointclouds( | |
points=points, | |
normals=normals if with_normals else None, | |
features=features if with_features else None, | |
) | |
pcl_copy = pcl.subsample(max_points=4) | |
for length, points_ in zip(lengths_max_4, pcl_copy.points_list()): | |
self.assertEqual(points_.shape, (length, 3)) | |
if with_normals: | |
for length, normals_ in zip(lengths_max_4, pcl_copy.normals_list()): | |
self.assertEqual(normals_.shape, (length, 3)) | |
else: | |
self.assertIsNone(pcl_copy.normals_list()) | |
if with_features: | |
for length, features_ in zip( | |
lengths_max_4, pcl_copy.features_list() | |
): | |
self.assertEqual(features_.shape, (length, 5)) | |
else: | |
self.assertIsNone(pcl_copy.features_list()) | |
pcl2 = Pointclouds(points=points) | |
pcl_copy2 = pcl2.subsample(lengths_max_4) | |
for length, points_ in zip(lengths_max_4, pcl_copy2.points_list()): | |
self.assertEqual(points_.shape, (length, 3)) | |
def test_join_pointclouds_as_batch(self): | |
""" | |
Test join_pointclouds_as_batch | |
""" | |
def check_item(x, y): | |
self.assertEqual(x is None, y is None) | |
if x is not None: | |
self.assertClose(torch.cat([x, x, x]), y) | |
def check_triple(points, points3): | |
""" | |
Verify that points3 is three copies of points. | |
""" | |
check_item(points.points_padded(), points3.points_padded()) | |
check_item(points.normals_padded(), points3.normals_padded()) | |
check_item(points.features_padded(), points3.features_padded()) | |
lengths = [4, 5, 13, 3] | |
points = [torch.rand(length, 3) for length in lengths] | |
features = [torch.rand(length, 5) for length in lengths] | |
normals = [torch.rand(length, 3) for length in lengths] | |
# Test with normals and features present | |
pcl1 = Pointclouds(points=points, features=features, normals=normals) | |
pcl3 = join_pointclouds_as_batch([pcl1] * 3) | |
check_triple(pcl1, pcl3) | |
# Test with normals and features present for tensor backed pointclouds | |
N, P, D = 5, 30, 4 | |
pcl = Pointclouds( | |
points=torch.rand(N, P, 3), | |
features=torch.rand(N, P, D), | |
normals=torch.rand(N, P, 3), | |
) | |
pcl3 = join_pointclouds_as_batch([pcl] * 3) | |
check_triple(pcl, pcl3) | |
# Test with inconsistent #features | |
with self.assertRaisesRegex(ValueError, "same number of features"): | |
join_pointclouds_as_batch([pcl1, pcl]) | |
# Test without normals | |
pcl_nonormals = Pointclouds(points=points, features=features) | |
pcl3 = join_pointclouds_as_batch([pcl_nonormals] * 3) | |
check_triple(pcl_nonormals, pcl3) | |
pcl_scene = join_pointclouds_as_scene([pcl_nonormals] * 3) | |
self.assertEqual(len(pcl_scene), 1) | |
self.assertClose(pcl_scene.features_packed(), pcl3.features_packed()) | |
# Test without features | |
pcl_nofeats = Pointclouds(points=points, normals=normals) | |
pcl3 = join_pointclouds_as_batch([pcl_nofeats] * 3) | |
check_triple(pcl_nofeats, pcl3) | |
pcl_scene = join_pointclouds_as_scene([pcl_nofeats] * 3) | |
self.assertEqual(len(pcl_scene), 1) | |
self.assertClose(pcl_scene.normals_packed(), pcl3.normals_packed()) | |
# Check error raised if all pointclouds in the batch | |
# are not consistent in including normals/features | |
with self.assertRaisesRegex(ValueError, "some set to None"): | |
join_pointclouds_as_batch([pcl, pcl_nonormals, pcl_nonormals]) | |
with self.assertRaisesRegex(ValueError, "some set to None"): | |
join_pointclouds_as_batch([pcl, pcl_nofeats, pcl_nofeats]) | |
# Check error if first input is a single pointclouds object | |
# instead of a list | |
with self.assertRaisesRegex(ValueError, "Wrong first argument"): | |
join_pointclouds_as_batch(pcl) | |
# Check error if all pointclouds are not on the same device | |
with self.assertRaisesRegex(ValueError, "same device"): | |
join_pointclouds_as_batch([pcl, pcl.to("cuda:0")]) | |
def compute_packed_with_init( | |
num_clouds: int = 10, max_p: int = 100, features: int = 300 | |
): | |
clouds = TestPointclouds.init_cloud(num_clouds, max_p, features) | |
torch.cuda.synchronize() | |
def compute_packed(): | |
clouds._compute_packed(refresh=True) | |
torch.cuda.synchronize() | |
return compute_packed | |
def compute_padded_with_init( | |
num_clouds: int = 10, max_p: int = 100, features: int = 300 | |
): | |
clouds = TestPointclouds.init_cloud(num_clouds, max_p, features) | |
torch.cuda.synchronize() | |
def compute_padded(): | |
clouds._compute_padded(refresh=True) | |
torch.cuda.synchronize() | |
return compute_padded | |