Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import torch | |
from pytorch3d.renderer.implicit import HarmonicEmbedding | |
from torch.distributions import MultivariateNormal | |
from .common_testing import TestCaseMixin | |
class TestHarmonicEmbedding(TestCaseMixin, unittest.TestCase): | |
def setUp(self) -> None: | |
super().setUp() | |
torch.manual_seed(1) | |
def test_correct_output_dim(self): | |
embed_fun = HarmonicEmbedding(n_harmonic_functions=2, append_input=False) | |
# input_dims * (2 * n_harmonic_functions + int(append_input)) | |
output_dim = 3 * (2 * 2 + int(False)) | |
self.assertEqual( | |
output_dim, | |
embed_fun.get_output_dim_static( | |
input_dims=3, n_harmonic_functions=2, append_input=False | |
), | |
) | |
self.assertEqual(output_dim, embed_fun.get_output_dim()) | |
def test_correct_frequency_range(self): | |
embed_fun_log = HarmonicEmbedding(n_harmonic_functions=3) | |
embed_fun_lin = HarmonicEmbedding(n_harmonic_functions=3, logspace=False) | |
self.assertClose(embed_fun_log._frequencies, torch.FloatTensor((1.0, 2.0, 4.0))) | |
self.assertClose(embed_fun_lin._frequencies, torch.FloatTensor((1.0, 2.5, 4.0))) | |
def test_correct_embed_out(self): | |
n_harmonic_functions = 2 | |
x = torch.randn((1, 5)) | |
D = 5 * n_harmonic_functions * 2 # sin + cos | |
embed_fun = HarmonicEmbedding( | |
n_harmonic_functions=n_harmonic_functions, append_input=False | |
) | |
embed_out = embed_fun(x) | |
self.assertEqual(embed_out.shape, (1, D)) | |
# Sum the squares of the respective frequencies | |
# cos^2(x) + sin^2(x) = 1 | |
sum_squares = embed_out[0, : D // 2] ** 2 + embed_out[0, D // 2 :] ** 2 | |
self.assertClose(sum_squares, torch.ones((D // 2))) | |
# Test append input | |
embed_fun = HarmonicEmbedding( | |
n_harmonic_functions=n_harmonic_functions, append_input=True | |
) | |
embed_out_appended_input = embed_fun(x) | |
self.assertClose( | |
embed_out_appended_input.shape, torch.tensor((1, D + x.shape[-1])) | |
) | |
# Last plane in output is the input | |
self.assertClose(embed_out_appended_input[..., -x.shape[-1] :], x) | |
self.assertClose(embed_out_appended_input[..., : -x.shape[-1]], embed_out) | |
def test_correct_embed_out_with_diag_cov(self): | |
n_harmonic_functions = 2 | |
x = torch.randn((1, 3)) | |
diag_cov = torch.randn((1, 3)) | |
D = 3 * n_harmonic_functions * 2 # sin + cos | |
embed_fun = HarmonicEmbedding( | |
n_harmonic_functions=n_harmonic_functions, append_input=False | |
) | |
embed_out = embed_fun(x, diag_cov=diag_cov) | |
self.assertEqual(embed_out.shape, (1, D)) | |
# Compute the scaling factor introduce in MipNerf | |
scale_factor = ( | |
-0.5 * diag_cov[..., None] * torch.pow(embed_fun._frequencies[None, :], 2) | |
) | |
scale_factor = torch.exp(scale_factor).reshape(1, -1).tile((1, 2)) | |
# If we remove this scaling factor, we should go back to the | |
# classical harmonic embedding: | |
# Sum the squares of the respective frequencies | |
# cos^2(x) + sin^2(x) = 1 | |
embed_out_without_cov = embed_out / scale_factor | |
sum_squares = ( | |
embed_out_without_cov[0, : D // 2] ** 2 | |
+ embed_out_without_cov[0, D // 2 :] ** 2 | |
) | |
self.assertClose(sum_squares, torch.ones((D // 2))) | |
# Test append input | |
embed_fun = HarmonicEmbedding( | |
n_harmonic_functions=n_harmonic_functions, append_input=True | |
) | |
embed_out_appended_input = embed_fun(x, diag_cov=diag_cov) | |
self.assertClose( | |
embed_out_appended_input.shape, torch.tensor((1, D + x.shape[-1])) | |
) | |
# Last plane in output is the input | |
self.assertClose(embed_out_appended_input[..., -x.shape[-1] :], x) | |
self.assertClose(embed_out_appended_input[..., : -x.shape[-1]], embed_out) | |
def test_correct_behavior_between_ipe_and_its_estimation_from_harmonic_embedding( | |
self, | |
): | |
""" | |
Check that the HarmonicEmbedding with integrated_position_encoding (IPE) set to | |
True is coherent with the HarmonicEmbedding. | |
What is the idea behind this test? | |
We wish to produce an IPE that is the expectation | |
of our lifted multivariate gaussian, modulated by the sine and cosine of | |
the coordinates. These expectation has a closed-form | |
(see equations 11, 12, 13, 14 of [1]). | |
We sample N elements from the multivariate gaussian defined by its mean and covariance | |
and compute the HarmonicEmbedding. The expected value of those embeddings should be | |
equal to our IPE. | |
Inspired from: | |
https://github.com/google/mipnerf/blob/84c969e0a623edd183b75693aed72a7e7c22902d/internal/mip_test.py#L359 | |
References: | |
[1] `MIP-NeRF <https://arxiv.org/abs/2103.13415>`_. | |
""" | |
num_dims = 3 | |
n_harmonic_functions = 6 | |
mean = torch.randn(num_dims) | |
diag_cov = torch.rand(num_dims) | |
he_fun = HarmonicEmbedding( | |
n_harmonic_functions=n_harmonic_functions, logspace=True, append_input=False | |
) | |
ipe_fun = HarmonicEmbedding( | |
n_harmonic_functions=n_harmonic_functions, | |
append_input=False, | |
) | |
embedding_ipe = ipe_fun(mean, diag_cov=diag_cov) | |
rand_mvn = MultivariateNormal(mean, torch.eye(num_dims) * diag_cov) | |
# Providing a large enough number of samples | |
# we should obtain an estimation close to our IPE | |
num_samples = 100000 | |
embedding_he = he_fun(rand_mvn.sample_n(num_samples)) | |
self.assertClose(embedding_he.mean(0), embedding_ipe, rtol=1e-2, atol=1e-2) | |