Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import numpy as np | |
import torch | |
from pytorch3d.common.workaround import _safe_det_3x3 | |
from .common_testing import TestCaseMixin | |
class TestSafeDet3x3(TestCaseMixin, unittest.TestCase): | |
def setUp(self) -> None: | |
super().setUp() | |
torch.manual_seed(42) | |
np.random.seed(42) | |
def _test_det_3x3(self, batch_size, device): | |
t = torch.rand((batch_size, 3, 3), dtype=torch.float32, device=device) | |
actual_det = _safe_det_3x3(t) | |
expected_det = t.det() | |
self.assertClose(actual_det, expected_det, atol=1e-7) | |
def test_empty_batch(self): | |
self._test_det_3x3(0, torch.device("cpu")) | |
self._test_det_3x3(0, torch.device("cuda:0")) | |
def test_manual(self): | |
t = torch.Tensor( | |
[ | |
[[1, 0, 0], [0, 1, 0], [0, 0, 1]], | |
[[2, -5, 3], [0, 7, -2], [-1, 4, 1]], | |
[[6, 1, 1], [4, -2, 5], [2, 8, 7]], | |
] | |
).to(dtype=torch.float32) | |
expected_det = torch.Tensor([1, 41, -306]).to(dtype=torch.float32) | |
self.assertClose(_safe_det_3x3(t), expected_det) | |
device_cuda = torch.device("cuda:0") | |
self.assertClose( | |
_safe_det_3x3(t.to(device=device_cuda)), expected_det.to(device=device_cuda) | |
) | |
def test_regression(self): | |
tries = 32 | |
device_cpu = torch.device("cpu") | |
device_cuda = torch.device("cuda:0") | |
batch_sizes = np.random.randint(low=1, high=128, size=tries) | |
for batch_size in batch_sizes: | |
self._test_det_3x3(batch_size, device_cpu) | |
self._test_det_3x3(batch_size, device_cuda) | |