Linly-Talker / pytorch3d /tests /common_testing.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import os
import unittest
from numbers import Real
from pathlib import Path
from typing import Callable, Optional, Union
import numpy as np
import torch
from PIL import Image
def interactive_testing_requested() -> bool:
"""
Certain tests are only useful when run interactively, and so are not regularly run.
These are activated by this funciton returning True, which the user requests by
setting the environment variable `PYTORCH3D_INTERACTIVE_TESTING` to 1.
"""
return os.environ.get("PYTORCH3D_INTERACTIVE_TESTING", "") == "1"
def skip_opengl_requested() -> bool:
return os.environ.get("PYTORCH3D_NO_TEST_OPENGL", "") == "1"
usesOpengl = unittest.skipIf(skip_opengl_requested(), "uses opengl")
def get_tests_dir() -> Path:
"""
Returns Path for the directory containing this file.
"""
return Path(__file__).resolve().parent
def get_pytorch3d_dir() -> Path:
"""
Returns Path for the root PyTorch3D directory.
Meta internal systems need a special case here.
"""
if os.environ.get("INSIDE_RE_WORKER") is not None:
return Path(__file__).resolve().parent.parent
elif os.environ.get("CONDA_BUILD_STATE", "") == "TEST":
return Path(os.environ["SRC_DIR"])
else:
return Path(__file__).resolve().parent.parent
def load_rgb_image(filename: str, data_dir: Union[str, Path]):
filepath = os.path.join(data_dir, filename)
with Image.open(filepath) as raw_image:
image = torch.from_numpy(np.array(raw_image) / 255.0)
image = image.to(dtype=torch.float32)
return image[..., :3]
TensorOrArray = Union[torch.Tensor, np.ndarray]
def get_random_cuda_device() -> str:
"""
Function to get a random GPU device from the
available devices. This is useful for testing
that custom cuda kernels can support inputs on
any device without having to set the device explicitly.
"""
num_devices = torch.cuda.device_count()
device_id = (
torch.randint(high=num_devices, size=(1,)).item() if num_devices > 1 else 0
)
return "cuda:%d" % device_id
class TestCaseMixin(unittest.TestCase):
def assertSeparate(self, tensor1, tensor2) -> None:
"""
Verify that tensor1 and tensor2 have their data in distinct locations.
"""
self.assertNotEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
def assertNotSeparate(self, tensor1, tensor2) -> None:
"""
Verify that tensor1 and tensor2 have their data in the same locations.
"""
self.assertEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
def assertAllSeparate(self, tensor_list) -> None:
"""
Verify that all tensors in tensor_list have their data in
distinct locations.
"""
ptrs = [i.storage().data_ptr() for i in tensor_list]
self.assertCountEqual(ptrs, set(ptrs))
def assertNormsClose(
self,
input: TensorOrArray,
other: TensorOrArray,
norm_fn: Callable[[TensorOrArray], TensorOrArray],
*,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
msg: Optional[str] = None,
) -> None:
"""
Verifies that two tensors or arrays have the same shape and are close
given absolute and relative tolerance; raises AssertionError otherwise.
A custom norm function is computed before comparison. If no such pre-
processing needed, pass `torch.abs` or, equivalently, call `assertClose`.
Args:
input, other: two tensors or two arrays.
norm_fn: The function evaluates
`all(norm_fn(input - other) <= atol + rtol * norm_fn(other))`.
norm_fn is a tensor -> tensor function; the output has:
* all entries non-negative,
* shape defined by the input shape only.
rtol, atol, equal_nan: as for torch.allclose.
msg: message in case the assertion is violated.
Note:
Optional arguments here are all keyword-only, to avoid confusion
with msg arguments on other assert functions.
"""
self.assertEqual(np.shape(input), np.shape(other))
diff = norm_fn(input - other)
other_ = norm_fn(other)
# We want to generalize allclose(input, output), which is essentially
# all(diff <= atol + rtol * other)
# but with a sophisticated handling non-finite values.
# We work that around by calling allclose() with the following arguments:
# allclose(diff + other_, other_). This computes what we want because
# all(|diff + other_ - other_| <= atol + rtol * |other_|) ==
# all(|norm_fn(input - other)| <= atol + rtol * |norm_fn(other)|) ==
# all(norm_fn(input - other) <= atol + rtol * norm_fn(other)).
self.assertClose(
diff + other_, other_, rtol=rtol, atol=atol, equal_nan=equal_nan, msg=msg
)
def assertClose(
self,
input: TensorOrArray,
other: TensorOrArray,
*,
rtol: float = 1e-05,
atol: float = 1e-08,
equal_nan: bool = False,
msg: Optional[str] = None,
) -> None:
"""
Verifies that two tensors or arrays have the same shape and are close
given absolute and relative tolerance, i.e. checks
`all(|input - other| <= atol + rtol * |other|)`;
raises AssertionError otherwise.
Args:
input, other: two tensors or two arrays.
rtol, atol, equal_nan: as for torch.allclose.
msg: message in case the assertion is violated.
Note:
Optional arguments here are all keyword-only, to avoid confusion
with msg arguments on other assert functions.
"""
self.assertEqual(np.shape(input), np.shape(other))
backend = torch if torch.is_tensor(input) else np
close = backend.allclose(
input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
)
if close:
return
# handle bool case
if backend == torch and input.dtype == torch.bool:
diff = (input != other).float()
ratio = diff
if backend == np and input.dtype == bool:
diff = (input != other).astype(float)
ratio = diff
else:
diff = backend.abs(input + 0.0 - other)
ratio = diff / backend.abs(other)
try_relative = (diff <= atol) | (backend.isfinite(ratio) & (ratio > 0))
if try_relative.all():
if backend == np:
# Avoid a weirdness with zero dimensional arrays.
ratio = np.array(ratio)
ratio[diff <= atol] = 0
extra = f" Max relative diff {ratio.max()}"
else:
extra = ""
shape = tuple(input.shape)
loc = np.unravel_index(int(diff.argmax()), shape)
max_diff = diff.max()
err = f"Not close. Max diff {max_diff}.{extra} Shape {shape}. At {loc}."
if msg is not None:
self.fail(f"{msg} {err}")
self.fail(err)
def assertConstant(
self, input: TensorOrArray, value: Real, *, atol: float = 0
) -> None:
"""
Asserts input is entirely filled with value.
Args:
input: tensor or array
value: expected value
atol: tolerance
"""
mn, mx = input.min(), input.max()
msg = f"values in range [{mn}, {mx}], not {value}, shape {input.shape}"
if atol == 0:
self.assertEqual(input.min(), value, msg=msg)
self.assertEqual(input.max(), value, msg=msg)
else:
self.assertGreater(input.min(), value - atol, msg=msg)
self.assertLess(input.max(), value + atol, msg=msg)