Spaces:
Running
Running
import argparse | |
import os | |
from omegaconf import OmegaConf | |
import numpy as np | |
import cv2 | |
import torch | |
import glob | |
import pickle | |
import sys | |
from tqdm import tqdm | |
import copy | |
import json | |
from musetalk.utils.utils import get_file_type,get_video_fps,datagen | |
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder | |
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending | |
from musetalk.utils.utils import load_all_model | |
import shutil | |
import threading | |
import queue | |
import time | |
# load model weights | |
audio_processor, vae, unet, pe = load_all_model() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
timesteps = torch.tensor([0], device=device) | |
pe = pe.half() | |
vae.vae = vae.vae.half() | |
unet.model = unet.model.half() | |
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000): | |
cap = cv2.VideoCapture(vid_path) | |
count = 0 | |
while True: | |
if count > cut_frame: | |
break | |
ret, frame = cap.read() | |
if ret: | |
cv2.imwrite(f"{save_path}/{count:08d}.png", frame) | |
count += 1 | |
else: | |
break | |
def osmakedirs(path_list): | |
for path in path_list: | |
os.makedirs(path) if not os.path.exists(path) else None | |
class Avatar: | |
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation): | |
self.avatar_id = avatar_id | |
self.video_path = video_path | |
self.bbox_shift = bbox_shift | |
self.avatar_path = f"./results/avatars/{avatar_id}" | |
self.full_imgs_path = f"{self.avatar_path}/full_imgs" | |
self.coords_path = f"{self.avatar_path}/coords.pkl" | |
self.latents_out_path= f"{self.avatar_path}/latents.pt" | |
self.video_out_path = f"{self.avatar_path}/vid_output/" | |
self.mask_out_path =f"{self.avatar_path}/mask" | |
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl" | |
self.avatar_info_path = f"{self.avatar_path}/avator_info.json" | |
self.avatar_info = { | |
"avatar_id":avatar_id, | |
"video_path":video_path, | |
"bbox_shift":bbox_shift | |
} | |
self.preparation = preparation | |
self.batch_size = batch_size | |
self.idx = 0 | |
self.init() | |
def init(self): | |
if self.preparation: | |
if os.path.exists(self.avatar_path): | |
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)") | |
if response.lower() == "y": | |
shutil.rmtree(self.avatar_path) | |
print("*********************************") | |
print(f" creating avator: {self.avatar_id}") | |
print("*********************************") | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
self.prepare_material() | |
else: | |
self.input_latent_list_cycle = torch.load(self.latents_out_path) | |
with open(self.coords_path, 'rb') as f: | |
self.coord_list_cycle = pickle.load(f) | |
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) | |
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.frame_list_cycle = read_imgs(input_img_list) | |
with open(self.mask_coords_path, 'rb') as f: | |
self.mask_coords_list_cycle = pickle.load(f) | |
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) | |
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.mask_list_cycle = read_imgs(input_mask_list) | |
else: | |
print("*********************************") | |
print(f" creating avator: {self.avatar_id}") | |
print("*********************************") | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
self.prepare_material() | |
else: | |
if not os.path.exists(self.avatar_path): | |
print(f"{self.avatar_id} does not exist, you should set preparation to True") | |
sys.exit() | |
with open(self.avatar_info_path, "r") as f: | |
avatar_info = json.load(f) | |
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']: | |
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)") | |
if response.lower() == "c": | |
shutil.rmtree(self.avatar_path) | |
print("*********************************") | |
print(f" creating avator: {self.avatar_id}") | |
print("*********************************") | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
self.prepare_material() | |
else: | |
sys.exit() | |
else: | |
self.input_latent_list_cycle = torch.load(self.latents_out_path) | |
with open(self.coords_path, 'rb') as f: | |
self.coord_list_cycle = pickle.load(f) | |
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) | |
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.frame_list_cycle = read_imgs(input_img_list) | |
with open(self.mask_coords_path, 'rb') as f: | |
self.mask_coords_list_cycle = pickle.load(f) | |
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) | |
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.mask_list_cycle = read_imgs(input_mask_list) | |
def prepare_material(self): | |
print("preparing data materials ... ...") | |
with open(self.avatar_info_path, "w") as f: | |
json.dump(self.avatar_info, f) | |
if os.path.isfile(self.video_path): | |
video2imgs(self.video_path, self.full_imgs_path, ext = 'png') | |
else: | |
print(f"copy files in {self.video_path}") | |
files = os.listdir(self.video_path) | |
files.sort() | |
files = [file for file in files if file.split(".")[-1]=="png"] | |
for filename in files: | |
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}") | |
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))) | |
print("extracting landmarks...") | |
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift) | |
input_latent_list = [] | |
idx = -1 | |
# maker if the bbox is not sufficient | |
coord_placeholder = (0.0,0.0,0.0,0.0) | |
for bbox, frame in zip(coord_list, frame_list): | |
idx = idx + 1 | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
latents = vae.get_latents_for_unet(resized_crop_frame) | |
input_latent_list.append(latents) | |
self.frame_list_cycle = frame_list + frame_list[::-1] | |
self.coord_list_cycle = coord_list + coord_list[::-1] | |
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
self.mask_coords_list_cycle = [] | |
self.mask_list_cycle = [] | |
for i,frame in enumerate(tqdm(self.frame_list_cycle)): | |
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame) | |
face_box = self.coord_list_cycle[i] | |
mask,crop_box = get_image_prepare_material(frame,face_box) | |
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask) | |
self.mask_coords_list_cycle += [crop_box] | |
self.mask_list_cycle.append(mask) | |
with open(self.mask_coords_path, 'wb') as f: | |
pickle.dump(self.mask_coords_list_cycle, f) | |
with open(self.coords_path, 'wb') as f: | |
pickle.dump(self.coord_list_cycle, f) | |
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path)) | |
# | |
def process_frames(self, | |
res_frame_queue, | |
video_len, | |
skip_save_images): | |
print(video_len) | |
while True: | |
if self.idx>=video_len-1: | |
break | |
try: | |
start = time.time() | |
res_frame = res_frame_queue.get(block=True, timeout=1) | |
except queue.Empty: | |
continue | |
bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))] | |
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))]) | |
x1, y1, x2, y2 = bbox | |
try: | |
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
except: | |
continue | |
mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))] | |
mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))] | |
#combine_frame = get_image(ori_frame,res_frame,bbox) | |
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box) | |
if skip_save_images is False: | |
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame) | |
self.idx = self.idx + 1 | |
def inference(self, | |
audio_path, | |
out_vid_name, | |
fps, | |
skip_save_images): | |
os.makedirs(self.avatar_path+'/tmp',exist_ok =True) | |
print("start inference") | |
############################################## extract audio feature ############################################## | |
start_time = time.time() | |
whisper_feature = audio_processor.audio2feat(audio_path) | |
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) | |
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms") | |
############################################## inference batch by batch ############################################## | |
video_num = len(whisper_chunks) | |
res_frame_queue = queue.Queue() | |
self.idx = 0 | |
# # Create a sub-thread and start it | |
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images)) | |
process_thread.start() | |
gen = datagen(whisper_chunks, | |
self.input_latent_list_cycle, | |
self.batch_size) | |
start_time = time.time() | |
res_frame_list = [] | |
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/self.batch_size)))): | |
audio_feature_batch = torch.from_numpy(whisper_batch) | |
audio_feature_batch = audio_feature_batch.to(device=unet.device, | |
dtype=unet.model.dtype) | |
audio_feature_batch = pe(audio_feature_batch) | |
latent_batch = latent_batch.to(dtype=unet.model.dtype) | |
pred_latents = unet.model(latent_batch, | |
timesteps, | |
encoder_hidden_states=audio_feature_batch).sample | |
recon = vae.decode_latents(pred_latents) | |
for res_frame in recon: | |
res_frame_queue.put(res_frame) | |
# Close the queue and sub-thread after all tasks are completed | |
process_thread.join() | |
if args.skip_save_images is True: | |
print('Total process time of {} frames without saving images = {}s'.format( | |
video_num, | |
time.time()-start_time)) | |
else: | |
print('Total process time of {} frames including saving images = {}s'.format( | |
video_num, | |
time.time()-start_time)) | |
if out_vid_name is not None and args.skip_save_images is False: | |
# optional | |
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4" | |
print(cmd_img2video) | |
os.system(cmd_img2video) | |
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on | |
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}" | |
print(cmd_combine_audio) | |
os.system(cmd_combine_audio) | |
os.remove(f"{self.avatar_path}/temp.mp4") | |
shutil.rmtree(f"{self.avatar_path}/tmp") | |
print(f"result is save to {output_vid}") | |
print("\n") | |
if __name__ == "__main__": | |
''' | |
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time. | |
''' | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--inference_config", | |
type=str, | |
default="configs/inference/realtime.yaml", | |
) | |
parser.add_argument("--fps", | |
type=int, | |
default=25, | |
) | |
parser.add_argument("--batch_size", | |
type=int, | |
default=4, | |
) | |
parser.add_argument("--skip_save_images", | |
action="store_true", | |
help="Whether skip saving images for better generation speed calculation", | |
) | |
args = parser.parse_args() | |
inference_config = OmegaConf.load(args.inference_config) | |
print(inference_config) | |
for avatar_id in inference_config: | |
data_preparation = inference_config[avatar_id]["preparation"] | |
video_path = inference_config[avatar_id]["video_path"] | |
bbox_shift = inference_config[avatar_id]["bbox_shift"] | |
avatar = Avatar( | |
avatar_id = avatar_id, | |
video_path = video_path, | |
bbox_shift = bbox_shift, | |
batch_size = args.batch_size, | |
preparation= data_preparation) | |
audio_clips = inference_config[avatar_id]["audio_clips"] | |
for audio_num, audio_path in audio_clips.items(): | |
print("Inferring using:",audio_path) | |
avatar.inference(audio_path, | |
audio_num, | |
args.fps, | |
args.skip_save_images) | |