Spaces:
Running
Running
File size: 14,213 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import ctypes
import os
import sys
import threading
import unittest
import torch
os.environ["PYOPENGL_PLATFORM"] = "egl"
import pycuda._driver # noqa
from OpenGL import GL as gl # noqa
from OpenGL.raw.EGL._errors import EGLError # noqa
from pytorch3d.renderer.opengl import _can_import_egl_and_pycuda # noqa
from pytorch3d.renderer.opengl.opengl_utils import ( # noqa
_define_egl_extension,
_egl_convert_to_int_array,
_get_cuda_device,
egl,
EGLContext,
global_device_context_store,
)
from .common_testing import TestCaseMixin, usesOpengl # noqa
MAX_EGL_HEIGHT = global_device_context_store.max_egl_height
MAX_EGL_WIDTH = global_device_context_store.max_egl_width
def _draw_square(r=1.0, g=0.0, b=1.0, **kwargs) -> torch.Tensor:
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
gl.glColor3f(r, g, b)
x1, x2 = -0.5, 0.5
y1, y2 = -0.5, 0.5
gl.glRectf(x1, y1, x2, y2)
out_buffer = gl.glReadPixels(
0, 0, MAX_EGL_WIDTH, MAX_EGL_HEIGHT, gl.GL_RGB, gl.GL_UNSIGNED_BYTE
)
image = torch.frombuffer(out_buffer, dtype=torch.uint8).reshape(
MAX_EGL_HEIGHT, MAX_EGL_WIDTH, 3
)
return image
def _draw_squares_with_context(
cuda_device_id=0, result=None, thread_id=None, **kwargs
) -> None:
context = EGLContext(MAX_EGL_WIDTH, MAX_EGL_HEIGHT, cuda_device_id)
with context.active_and_locked():
images = []
for _ in range(3):
images.append(_draw_square(**kwargs).float())
if result is not None and thread_id is not None:
egl_info = context.get_context_info()
data = {"egl": egl_info, "images": images}
result[thread_id] = data
def _draw_squares_with_context_store(
cuda_device_id=0,
result=None,
thread_id=None,
verbose=False,
**kwargs,
) -> None:
device = torch.device(f"cuda:{cuda_device_id}")
context = global_device_context_store.get_egl_context(device)
if verbose:
print(f"In thread {thread_id}, device {cuda_device_id}.")
with context.active_and_locked():
images = []
for _ in range(3):
images.append(_draw_square(**kwargs).float())
if result is not None and thread_id is not None:
egl_info = context.get_context_info()
data = {"egl": egl_info, "images": images}
result[thread_id] = data
@usesOpengl
class TestDeviceContextStore(TestCaseMixin, unittest.TestCase):
def test_cuda_context(self):
cuda_context_1 = global_device_context_store.get_cuda_context(
device=torch.device("cuda:0")
)
cuda_context_2 = global_device_context_store.get_cuda_context(
device=torch.device("cuda:0")
)
cuda_context_3 = global_device_context_store.get_cuda_context(
device=torch.device("cuda:1")
)
cuda_context_4 = global_device_context_store.get_cuda_context(
device=torch.device("cuda:1")
)
self.assertIs(cuda_context_1, cuda_context_2)
self.assertIs(cuda_context_3, cuda_context_4)
self.assertIsNot(cuda_context_1, cuda_context_3)
def test_egl_context(self):
egl_context_1 = global_device_context_store.get_egl_context(
torch.device("cuda:0")
)
egl_context_2 = global_device_context_store.get_egl_context(
torch.device("cuda:0")
)
egl_context_3 = global_device_context_store.get_egl_context(
torch.device("cuda:1")
)
egl_context_4 = global_device_context_store.get_egl_context(
torch.device("cuda:1")
)
self.assertIs(egl_context_1, egl_context_2)
self.assertIs(egl_context_3, egl_context_4)
self.assertIsNot(egl_context_1, egl_context_3)
@usesOpengl
class TestUtils(TestCaseMixin, unittest.TestCase):
def test_load_extensions(self):
# This should work
_define_egl_extension("eglGetPlatformDisplayEXT", egl.EGLDisplay)
# And this shouldn't (wrong extension)
with self.assertRaisesRegex(RuntimeError, "Cannot find EGL extension"):
_define_egl_extension("eglFakeExtensionEXT", egl.EGLBoolean)
def test_get_cuda_device(self):
# This should work
device = _get_cuda_device(0)
self.assertIsNotNone(device)
with self.assertRaisesRegex(ValueError, "Device 10000 not available"):
_get_cuda_device(10000)
def test_egl_convert_to_int_array(self):
egl_attributes = {egl.EGL_RED_SIZE: 8}
attribute_array = _egl_convert_to_int_array(egl_attributes)
self.assertEqual(attribute_array._type_, ctypes.c_int)
self.assertEqual(attribute_array._length_, 3)
self.assertEqual(attribute_array[0], egl.EGL_RED_SIZE)
self.assertEqual(attribute_array[1], 8)
self.assertEqual(attribute_array[2], egl.EGL_NONE)
@usesOpengl
class TestOpenGLSingleThreaded(TestCaseMixin, unittest.TestCase):
def test_draw_square(self):
context = EGLContext(width=MAX_EGL_WIDTH, height=MAX_EGL_HEIGHT)
with context.active_and_locked():
rendering_result = _draw_square().float()
expected_result = torch.zeros(
(MAX_EGL_WIDTH, MAX_EGL_HEIGHT, 3), dtype=torch.float
)
start_px = int(MAX_EGL_WIDTH / 4)
end_px = int(MAX_EGL_WIDTH * 3 / 4)
expected_result[start_px:end_px, start_px:end_px, 0] = 255.0
expected_result[start_px:end_px, start_px:end_px, 2] = 255.0
self.assertTrue(torch.all(expected_result == rendering_result))
def test_render_two_squares(self):
# Check that drawing twice doesn't overwrite the initial buffer.
context = EGLContext(width=MAX_EGL_WIDTH, height=MAX_EGL_HEIGHT)
with context.active_and_locked():
red_square = _draw_square(r=1.0, g=0.0, b=0.0)
blue_square = _draw_square(r=0.0, g=0.0, b=1.0)
start_px = int(MAX_EGL_WIDTH / 4)
end_px = int(MAX_EGL_WIDTH * 3 / 4)
self.assertTrue(
torch.all(
red_square[start_px:end_px, start_px:end_px]
== torch.tensor([255, 0, 0])
)
)
self.assertTrue(
torch.all(
blue_square[start_px:end_px, start_px:end_px]
== torch.tensor([0, 0, 255])
)
)
@usesOpengl
class TestOpenGLMultiThreaded(TestCaseMixin, unittest.TestCase):
def test_multiple_renders_single_gpu_single_context(self):
_draw_squares_with_context()
def test_multiple_renders_single_gpu_context_store(self):
_draw_squares_with_context_store()
def test_render_two_threads_single_gpu(self):
self._render_two_threads_single_gpu(_draw_squares_with_context)
def test_render_two_threads_single_gpu_context_store(self):
self._render_two_threads_single_gpu(_draw_squares_with_context_store)
def test_render_two_threads_two_gpus(self):
self._render_two_threads_two_gpus(_draw_squares_with_context)
def test_render_two_threads_two_gpus_context_store(self):
self._render_two_threads_two_gpus(_draw_squares_with_context_store)
def _render_two_threads_single_gpu(self, draw_fn):
result = [None] * 2
thread1 = threading.Thread(
target=draw_fn,
kwargs={
"cuda_device_id": 0,
"result": result,
"thread_id": 0,
"r": 1.0,
"g": 0.0,
"b": 0.0,
},
)
thread2 = threading.Thread(
target=draw_fn,
kwargs={
"cuda_device_id": 0,
"result": result,
"thread_id": 1,
"r": 0.0,
"g": 1.0,
"b": 0.0,
},
)
thread1.start()
thread2.start()
thread1.join()
thread2.join()
start_px = int(MAX_EGL_WIDTH / 4)
end_px = int(MAX_EGL_WIDTH * 3 / 4)
red_squares = torch.stack(result[0]["images"], dim=0)[
:, start_px:end_px, start_px:end_px
]
green_squares = torch.stack(result[1]["images"], dim=0)[
:, start_px:end_px, start_px:end_px
]
self.assertTrue(torch.all(red_squares == torch.tensor([255.0, 0.0, 0.0])))
self.assertTrue(torch.all(green_squares == torch.tensor([0.0, 255.0, 0.0])))
def _render_two_threads_two_gpus(self, draw_fn):
# Contrary to _render_two_threads_two_gpus, this renders in two separate threads
# but on a different GPU each. This means using different EGL contexts and is a
# much less risky endeavour.
result = [None] * 2
thread1 = threading.Thread(
target=draw_fn,
kwargs={
"cuda_device_id": 0,
"result": result,
"thread_id": 0,
"r": 1.0,
"g": 0.0,
"b": 0.0,
},
)
thread2 = threading.Thread(
target=draw_fn,
kwargs={
"cuda_device_id": 1,
"result": result,
"thread_id": 1,
"r": 0.0,
"g": 1.0,
"b": 0.0,
},
)
thread1.start()
thread2.start()
thread1.join()
thread2.join()
self.assertNotEqual(
result[0]["egl"]["context"].address, result[1]["egl"]["context"].address
)
start_px = int(MAX_EGL_WIDTH / 4)
end_px = int(MAX_EGL_WIDTH * 3 / 4)
red_squares = torch.stack(result[0]["images"], dim=0)[
:, start_px:end_px, start_px:end_px
]
green_squares = torch.stack(result[1]["images"], dim=0)[
:, start_px:end_px, start_px:end_px
]
self.assertTrue(torch.all(red_squares == torch.tensor([255.0, 0.0, 0.0])))
self.assertTrue(torch.all(green_squares == torch.tensor([0.0, 255.0, 0.0])))
def test_render_multi_thread_multi_gpu(self):
# Multiple threads using up multiple GPUs; more threads than GPUs.
# This is certainly not encouraged in practice, but shouldn't fail. Note that
# the context store will only allow one rendering at a time to occur on a
# single GPU, even across threads.
n_gpus = torch.cuda.device_count()
n_threads = 10
kwargs = {
"r": 1.0,
"g": 0.0,
"b": 0.0,
"verbose": True,
}
threads = []
for thread_id in range(n_threads):
kwargs.update(
{"cuda_device_id": thread_id % n_gpus, "thread_id": thread_id}
)
threads.append(
threading.Thread(
target=_draw_squares_with_context_store, kwargs=dict(kwargs)
)
)
for thread in threads:
thread.start()
for thread in threads:
thread.join()
@usesOpengl
class TestOpenGLUtils(TestCaseMixin, unittest.TestCase):
@classmethod
def tearDownClass(cls):
global_device_context_store.set_context_data(torch.device("cuda:0"), None)
def test_device_context_store(self):
# Most of DCS's functionality is tested in the tests above, test the remainder.
device = torch.device("cuda:0")
global_device_context_store.set_context_data(device, 123)
self.assertEqual(global_device_context_store.get_context_data(device), 123)
self.assertEqual(
global_device_context_store.get_context_data(torch.device("cuda:1")), None
)
# Check that contexts in store can be manually released (although that's a very
# bad idea! Don't do it manually!)
egl_ctx = global_device_context_store.get_egl_context(device)
cuda_ctx = global_device_context_store.get_cuda_context(device)
egl_ctx.release()
cuda_ctx.detach()
# Reset the contexts (just for testing! never do this manually!). Then, check
# that first running DeviceContextStore.release() will cause subsequent releases
# to fail (because we already released all the contexts).
global_device_context_store._cuda_contexts = {}
global_device_context_store._egl_contexts = {}
egl_ctx = global_device_context_store.get_egl_context(device)
cuda_ctx = global_device_context_store.get_cuda_context(device)
global_device_context_store.release()
with self.assertRaisesRegex(EGLError, "EGL_NOT_INITIALIZED"):
egl_ctx.release()
with self.assertRaisesRegex(pycuda._driver.LogicError, "cannot detach"):
cuda_ctx.detach()
def test_no_egl_error(self):
# Remove EGL, import OpenGL with the wrong backend. This should make it
# impossible to import OpenGL.EGL.
del os.environ["PYOPENGL_PLATFORM"]
modules = list(sys.modules)
for m in modules:
if "OpenGL" in m:
del sys.modules[m]
import OpenGL.GL # noqa
self.assertFalse(_can_import_egl_and_pycuda())
# Import OpenGL back with the right backend. This should get things on track.
modules = list(sys.modules)
for m in modules:
if "OpenGL" in m:
del sys.modules[m]
os.environ["PYOPENGL_PLATFORM"] = "egl"
self.assertTrue(_can_import_egl_and_pycuda())
def test_egl_release_error(self):
# Creating two contexts on the same device will lead to trouble (that's one of
# the reasons behind DeviceContextStore). You can release one of them,
# but you cannot release the same EGL resources twice!
ctx1 = EGLContext(width=100, height=100)
ctx2 = EGLContext(width=100, height=100)
ctx1.release()
with self.assertRaisesRegex(EGLError, "EGL_NOT_INITIALIZED"):
ctx2.release()
|