Spaces:
Running
on
A10G
Running
on
A10G
File size: 7,641 Bytes
4697625 f7759e6 4697625 3e5c24d 4697625 af8a12a 4697625 d02daeb 8e8b324 d754544 4697625 5eb5476 8e8ac22 4697625 a7dff95 4697625 39f64fe 4697625 f3f25c0 4697625 af8a12a 4697625 fda782c 4e7c20a fda782c 4697625 fda782c 4697625 4e7c20a 9b8ce8d 4e7c20a 4697625 5079251 4697625 e95a4ae afb8388 4697625 03a635d 4697625 19aee39 536c8d2 0c1b1f7 71ffbcc 536c8d2 24da6c0 536c8d2 3bcf222 f403525 3bcf222 0479d0c 536c8d2 f403525 5edff5f 0c1b1f7 0479d0c 8e8b324 0c1b1f7 536c8d2 4697625 0c1b1f7 4697625 fe2d1bb 0d84727 35c6732 0130b22 4697625 5eb5476 4697625 c37a174 4697625 f2ae223 4697625 fadb039 04afdc5 4697625 097f313 fadb039 0ff0b1f 8e8b324 4697625 8e8b324 91668c6 4697625 36a12a6 24da6c0 5079251 fadb039 5079251 f403525 4697625 0c1b1f7 4697625 0d84727 0c1b1f7 0d84727 536c8d2 0c1b1f7 536c8d2 4697625 fda782c 4e7c20a fadb039 fda782c 4e7c20a fda782c 406e2d8 fda782c 4697625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import torch
import random
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from torch import autocast, inference_mode
import re
# import spaces
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=False, num_inference_steps=num_diffusion_steps)
return zs, wts
def sample(zs, wts, prompt_tar="", skip=36, cfg_scale_tar=15, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "CompVis/stable-diffusion-v1-4"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
# @spaces.GPU
def get_example():
case = [
[
'Examples/gnochi_mirror.jpeg',
'Watercolor painting of a cat sitting next to a mirror',
'Examples/gnochi_mirror_watercolor_painting.png',
'',
100,
3.5,
36,
15,
],
[
'Examples/source_an_old_man.png',
'A bronze statue of an old man',
'Examples/ddpm_a_bronze_statue_of_an_old_man.png',
'',
100,
3.5,
36,
15,
],
[
'Examples/source_a_ceramic_vase_with_yellow_flowers.jpeg',
'A pink ceramic vase with a wheat bouquet',
'Examples/ddpm_a_pink_ceramic_vase_with_a_wheat_bouquet.png',
'',
100,
3.5,
36,
15,
],
[
'Examples/source_a_model_on_a_runway.jpeg',
'A zebra on the runway',
'Examples/ddpm_a_zebra_on_the_run_way.png',
'',
100,
3.5,
36,
15,
]
]
return case
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM Inversion
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
Based on the work introduced in:
<a href="https://arxiv.org/abs/2304.06140" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/edit_friendly_ddpm_inversion?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css='style.css') as demo:
def reset_do_inversion():
do_inversion = True
return do_inversion
def edit(input_image,
do_inversion,
wts, zs,
src_prompt ="",
tar_prompt="",
steps=100,
cfg_scale_src = 3.5,
cfg_scale_tar = 15,
skip=36,
seed = 0,
randomize_seed = True):
x0 = load_512(input_image, device=device)
if do_inversion or randomize_seed:
zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
do_inversion = False
output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=cfg_scale_tar)
return output, wts, zs, do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
do_inversion = gr.State(value=True)
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True, height=365, width=365)
output_image = gr.Image(label=f"Edited Image", interactive=False, height=365, width=365)
with gr.Row():
tar_prompt = gr.Textbox(lines=1, label="Describe your desired edited output", interactive=True)
with gr.Row():
with gr.Column(scale=1, min_width=100):
edit_button = gr.Button("Run")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
#inversion
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="describe the original image")
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
cfg_scale_src = gr.Slider(minimum=1, maximum=15, value=3.5, label=f"Source Guidance Scale", interactive=True)
with gr.Column():
# reconstruction
skip = gr.Slider(minimum=0, maximum=60, value=36, step = 1, label="Skip Steps", interactive=True)
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
edit_button.click(
fn = randomize_seed_fn,
inputs = [seed, randomize_seed],
outputs = [seed], queue = False).then(
fn=edit,
inputs=[input_image,
do_inversion, wts, zs,
src_prompt,
tar_prompt,
steps,
cfg_scale_src,
cfg_scale_tar,
skip,
seed,randomize_seed
],
outputs=[output_image, wts, zs, do_inversion],
)
input_image.change(
fn = reset_do_inversion,
outputs = [do_inversion]
)
src_prompt.change(
fn = reset_do_inversion,
outputs = [do_inversion]
)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, tar_prompt,output_image, src_prompt,steps,
cfg_scale_tar,
skip,
cfg_scale_tar
],
outputs=[output_image ],
)
demo.queue()
demo.launch(share=False) |