Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import time | |
# Renamed for clarity and consistency | |
def fake_diffusion_denoise(image, steps): | |
if image is None: | |
yield np.zeros((100, 100, 3), dtype=np.uint8) | |
return | |
original_image = image.astype(np.float32) / 255.0 | |
# Add initial noise | |
noisy_start_image = original_image + np.random.normal(0, 0.7, original_image.shape) | |
noisy_start_image = np.clip(noisy_start_image, 0, 1) | |
for i in range(steps): | |
time.sleep(0.2) | |
# Simulate denoising: gradually revert to the original image (linear progress) | |
progress = (i + 1) / steps | |
denoised_step = (1 - progress) * noisy_start_image + progress * original_image | |
denoised_step = np.clip(denoised_step, 0, 1) | |
yield (denoised_step * 255).astype(np.uint8) | |
yield (original_image * 255).astype(np.uint8) # Ensure final image is clean | |
def real_diffusion_add_noise(image, steps): | |
if image is None: | |
yield np.zeros((100, 100, 3), dtype=np.uint8) | |
return | |
base_image = image.astype(np.float32) / 255.0 | |
max_noise_std = 0.8 # Maximum noise level to reach | |
for i in range(steps): | |
time.sleep(0.2) | |
# Increase noise progressively | |
current_noise_std = max_noise_std * ((i + 1) / steps) | |
noise = np.random.normal(0, current_noise_std, base_image.shape) | |
noisy_step = base_image + noise | |
noisy_step = np.clip(noisy_step, 0, 1) | |
yield (noisy_step * 255).astype(np.uint8) | |
# Yield the most noisy version as the final step | |
final_noise = np.random.normal(0, max_noise_std, base_image.shape) | |
final_noisy_image = np.clip(base_image + final_noise, 0, 1) | |
yield (final_noisy_image * 255).astype(np.uint8) | |
def flow_matching_denoise(image, steps): | |
if image is None: | |
yield np.zeros((100, 100, 3), dtype=np.uint8) | |
return | |
original_image = image.astype(np.float32) / 255.0 | |
# Start with a significantly noisy image | |
very_noisy_image = original_image + np.random.normal(0, 1.0, original_image.shape) # High initial noise | |
very_noisy_image = np.clip(very_noisy_image, 0, 1) | |
for i in range(steps): | |
time.sleep(0.2) | |
# Non-linear progress using a sigmoid-like curve for smoother transition | |
p_norm = (i + 1) / steps # Normalized progress 0 to 1 | |
# Transform p_norm to a range like -5 to 5 for sigmoid | |
sigmoid_input = 10 * (p_norm - 0.5) | |
flow_progress = 1 / (1 + np.exp(-sigmoid_input)) | |
denoised_step = (1 - flow_progress) * very_noisy_image + flow_progress * original_image | |
denoised_step = np.clip(denoised_step, 0, 1) | |
yield (denoised_step * 255).astype(np.uint8) | |
yield (original_image * 255).astype(np.uint8) # Ensure final image is clean | |
# Main processing function that routes to different methods | |
def process_image_selected_method(method_selection, input_image, num_steps): | |
if input_image is None: | |
# This case should ideally be handled by Gradio if a default image URL is provided | |
# or prevented by making the image input mandatory. | |
# Yielding a placeholder if it somehow becomes None during processing. | |
yield np.zeros((200, 200, 3), dtype=np.uint8) | |
return | |
if method_selection == "Fake Diffusion (Denoise)": | |
yield from fake_diffusion_denoise(input_image, num_steps) | |
elif method_selection == "Real Diffusion (Add Noise)": | |
yield from real_diffusion_add_noise(input_image, num_steps) | |
elif method_selection == "Flow Matching (Denoise)": | |
yield from flow_matching_denoise(input_image, num_steps) | |
else: | |
# Default behavior: return the original image as is, or an error image | |
yield input_image | |
method_choices = ["Fake Diffusion (Denoise)", "Real Diffusion (Add Noise)", "Flow Matching (Denoise)"] | |
demo = gr.Interface( | |
fn=process_image_selected_method, # Use the router function | |
inputs=[ | |
gr.Dropdown(choices=method_choices, label="Select Method", value="Fake Diffusion (Denoise)"), | |
gr.Image(type="numpy", label="Input Image", value="https://gradio-builds.s3.amazonaws.com/diffusion_image/cute_dog.jpg"), | |
gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Processing Steps") | |
], | |
outputs=gr.Image(type="numpy", label="Processed Image"), | |
title="Diffusion Processing Demo", | |
description="Select a method: 'Fake Diffusion (Denoise)' and 'Flow Matching (Denoise)' will denoise an image. 'Real Diffusion (Add Noise)' will progressively add noise to the image. Adjust steps for granularity." | |
) | |
# define queue - required for generators | |
demo.queue() | |
demo.launch() |