Spaces:
Runtime error
Runtime error
Commit
Β·
e29216a
1
Parent(s):
be36d9d
tweak the vision_api prompt, create configuration files, minor tweak to main script
Browse files- config/model_config.yml +17 -0
- config/model_config_advanced.yml +17 -0
- models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/data_level0.bin +3 -0
- raw_documents/overview_background.txt β models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/header.bin +2 -2
- models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/length.bin +3 -0
- models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/link_lists.bin +0 -0
- models/chroma_db_advanced/chroma.sqlite3 +3 -0
- models/fine-tuned-embeddings-advanced/1_Pooling/config.json +3 -0
- models/fine-tuned-embeddings-advanced/README.md +3 -0
- models/fine-tuned-embeddings-advanced/config.json +3 -0
- models/fine-tuned-embeddings-advanced/config_sentence_transformers.json +3 -0
- models/fine-tuned-embeddings-advanced/eval/Information-Retrieval_evaluation_results.csv +3 -0
- models/fine-tuned-embeddings-advanced/model.safetensors +3 -0
- models/fine-tuned-embeddings-advanced/modules.json +3 -0
- models/fine-tuned-embeddings-advanced/sentence_bert_config.json +3 -0
- models/fine-tuned-embeddings-advanced/special_tokens_map.json +3 -0
- models/fine-tuned-embeddings-advanced/tokenizer.json +3 -0
- models/fine-tuned-embeddings-advanced/tokenizer_config.json +3 -0
- models/fine-tuned-embeddings-advanced/vocab.txt +3 -0
- notebooks/001_fine-tuning-embedding-model-advanced.ipynb +1470 -0
- notebooks/002_persisted-embedding-model-advanced.ipynb +507 -0
- notebooks/002_persisted-embedding-model.ipynb +20 -4
- raw_documents/answers.txt +3 -0
- raw_documents/conversation_examples.txt +3 -0
- raw_documents/qna.txt +2 -2
- requirements.txt +24 -11
- streamlit_app.py +15 -11
- vision_api.py +9 -1
config/model_config.yml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
input_data:
|
| 2 |
+
source:
|
| 3 |
+
- './raw_documents/qna.txt'
|
| 4 |
+
- './raw_documents/HI Chapter Summary Version 1.3.pdf'
|
| 5 |
+
- './raw_documents/conversation_examples.txt'
|
| 6 |
+
- './raw_documents/HI_Knowledge_Base.pdf'
|
| 7 |
+
- './raw_documents/answers.txt'
|
| 8 |
+
|
| 9 |
+
embeddings:
|
| 10 |
+
embedding_base_model: 'BAAI/bge-small-en-v1.5'
|
| 11 |
+
fine_tuned_embedding_model: 'local:models/fine-tuned-embeddings'
|
| 12 |
+
|
| 13 |
+
vector_store:
|
| 14 |
+
persisted_path: './models/chroma_db'
|
| 15 |
+
|
| 16 |
+
questionaire_data:
|
| 17 |
+
db_path: './database/mock_qna.sqlite'
|
config/model_config_advanced.yml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
input_data:
|
| 2 |
+
source:
|
| 3 |
+
- './raw_documents/qna.txt'
|
| 4 |
+
- './raw_documents/HI Chapter Summary Version 1.3.pdf'
|
| 5 |
+
- './raw_documents/conversation_examples.txt'
|
| 6 |
+
- './raw_documents/HI_Knowledge_Base.pdf'
|
| 7 |
+
- './raw_documents/answers.txt'
|
| 8 |
+
|
| 9 |
+
embeddings:
|
| 10 |
+
embedding_base_model: 'BAAI/bge-small-en-v1.5'
|
| 11 |
+
fine_tuned_embedding_model: 'local:models/fine-tuned-embeddings-advanced'
|
| 12 |
+
|
| 13 |
+
vector_store:
|
| 14 |
+
persisted_path: './models/chroma_db_advanced'
|
| 15 |
+
|
| 16 |
+
questionaire_data:
|
| 17 |
+
db_path: './database/mock_qna_advanced.sqlite'
|
models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/data_level0.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2eec38a208011f4f233e59d2618152fa02e42d91757412778a5db814fe80bf2f
|
| 3 |
+
size 1676000
|
raw_documents/overview_background.txt β models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/header.bin
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e87a1dc8bcae6f2c4bea6d5dd5005454d4dace8637dae29bff3c037ea771411e
|
| 3 |
+
size 100
|
models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/length.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
|
| 3 |
+
size 4000
|
models/chroma_db_advanced/a88943fe-4428-425d-8b9c-7bb8665a0c79/link_lists.bin
ADDED
|
File without changes
|
models/chroma_db_advanced/chroma.sqlite3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:51aba6bb0bf5e5851de1e4e6cf53215b874c11b7194b3b765a2edfbc59ce9313
|
| 3 |
+
size 15937536
|
models/fine-tuned-embeddings-advanced/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfd7e0a022036d0ffa0f998824a918247d5a7473d968cdc92e318fd04098e682
|
| 3 |
+
size 270
|
models/fine-tuned-embeddings-advanced/README.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:af2a3dc885fad9e063851f6d7d61c8451bd064d9be25a3086a6f4be73e3d66ec
|
| 3 |
+
size 2544
|
models/fine-tuned-embeddings-advanced/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9d1406e6b622e1d931c5535df1578231e0b315bf77ac55d547f36faed55b99ef
|
| 3 |
+
size 706
|
models/fine-tuned-embeddings-advanced/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:940d5f50db195fa6e5e6a4f122c095f77880de259d74b14a65779ed48bdd7c56
|
| 3 |
+
size 124
|
models/fine-tuned-embeddings-advanced/eval/Information-Retrieval_evaluation_results.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6120b99457f04ca31972429df8bcdc01ea1f1789df3f3a7b90859440d23cdedf
|
| 3 |
+
size 4140
|
models/fine-tuned-embeddings-advanced/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8eed74129b591608f8b74c53a800ae0035e63d623618cb64e26638124beb54f6
|
| 3 |
+
size 133462128
|
models/fine-tuned-embeddings-advanced/modules.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
|
| 3 |
+
size 349
|
models/fine-tuned-embeddings-advanced/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e39fda68ccbff05bfa723ae9c0e70e23e2ec373b76e0f8c6e71af72a693cbf
|
| 3 |
+
size 52
|
models/fine-tuned-embeddings-advanced/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d5b662e421ea9fac075174bb0688ee0d9431699900b90662acd44b2a350503a
|
| 3 |
+
size 695
|
models/fine-tuned-embeddings-advanced/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91f1def9b9391fdabe028cd3f3fcc4efd34e5d1f08c3bf2de513ebb5911a1854
|
| 3 |
+
size 711649
|
models/fine-tuned-embeddings-advanced/tokenizer_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b29c7bfc889e53b36d9dd3e686dd4300f6525110eaa98c76a5dafceb2029f53
|
| 3 |
+
size 1242
|
models/fine-tuned-embeddings-advanced/vocab.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
|
| 3 |
+
size 231508
|
notebooks/001_fine-tuning-embedding-model-advanced.ipynb
ADDED
|
@@ -0,0 +1,1470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "ca2c990f-5215-4ab9-8143-1d79db28edc6",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import json, os\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"from llama_index.core import SimpleDirectoryReader\n",
|
| 13 |
+
"from llama_index.core.node_parser import SentenceSplitter\n",
|
| 14 |
+
"from llama_index.core.schema import MetadataMode"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 2,
|
| 20 |
+
"id": "139da55d-f0c3-4b76-b47f-e18ee552eb30",
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"outputs": [],
|
| 23 |
+
"source": [
|
| 24 |
+
"from llama_index.finetuning.embeddings.common import (\n",
|
| 25 |
+
" EmbeddingQAFinetuneDataset,\n",
|
| 26 |
+
" generate_qa_embedding_pairs,\n",
|
| 27 |
+
")\n",
|
| 28 |
+
"from llama_index.finetuning import SentenceTransformersFinetuneEngine"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": 3,
|
| 34 |
+
"id": "1dfb1acc-606b-4106-baf7-87ed487b5d9c",
|
| 35 |
+
"metadata": {},
|
| 36 |
+
"outputs": [],
|
| 37 |
+
"source": [
|
| 38 |
+
"from llama_index.embeddings.openai.base import OpenAIEmbedding"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 4,
|
| 44 |
+
"id": "fa06c66a-ab07-46a6-bc53-f6157017883c",
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"from llama_index.core import ServiceContext, VectorStoreIndex"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": 5,
|
| 54 |
+
"id": "c9928491-520a-441a-8c44-1fc21cfa5def",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"from llama_index.core.schema import TextNode"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": 6,
|
| 64 |
+
"id": "25f0c7a3-c52f-4417-aec8-4b6cfbf7a1b5",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"outputs": [],
|
| 67 |
+
"source": [
|
| 68 |
+
"from tqdm.notebook import tqdm\n",
|
| 69 |
+
"import pandas as pd"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"cell_type": "code",
|
| 74 |
+
"execution_count": 7,
|
| 75 |
+
"id": "62f4d7f0-748a-405e-b5f1-6520fd02bedc",
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"outputs": [],
|
| 78 |
+
"source": [
|
| 79 |
+
"from sentence_transformers.evaluation import InformationRetrievalEvaluator\n",
|
| 80 |
+
"from sentence_transformers import SentenceTransformer\n",
|
| 81 |
+
"from pathlib import Path"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": 8,
|
| 87 |
+
"id": "12527049-a5cb-423c-8de5-099aee970c85",
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": [
|
| 91 |
+
"from llama_index.llms.openai import OpenAI"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": null,
|
| 97 |
+
"id": "7dc65d7b-3cdb-4513-b09f-f7406ad59b35",
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": []
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"cell_type": "code",
|
| 104 |
+
"execution_count": 9,
|
| 105 |
+
"id": "978cf71f-1ce7-4598-92fe-18fe22ca37c6",
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [],
|
| 108 |
+
"source": [
|
| 109 |
+
"TRAIN_FILES = [\"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
| 110 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\"]\n",
|
| 111 |
+
"VAL_FILES = [\"../raw_documents/qna.txt\",\n",
|
| 112 |
+
" \"../raw_documents/conversation_examples.txt\",\n",
|
| 113 |
+
" \"../raw_documents/answers.txt\"]\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"### based on all docs\n",
|
| 116 |
+
"TRAIN_CORPUS_FPATH = \"../data/train_corpus_advanced.json\"\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"### based on ../raw_documents/HI Chapter Summary Version 1.3.pdf\n",
|
| 119 |
+
"VAL_CORPUS_FPATH = \"../data/val_corpus.json\""
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "code",
|
| 124 |
+
"execution_count": null,
|
| 125 |
+
"id": "663cd20e-c16e-4dda-924e-5f60eb25a772",
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [],
|
| 128 |
+
"source": []
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": 10,
|
| 133 |
+
"id": "26f614c8-eb45-4cc1-b067-2c7299587982",
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": [
|
| 137 |
+
"def load_corpus(files, verbose=False):\n",
|
| 138 |
+
" if verbose:\n",
|
| 139 |
+
" print(f\"Loading files {files}\")\n",
|
| 140 |
+
"\n",
|
| 141 |
+
" reader = SimpleDirectoryReader(input_files=files)\n",
|
| 142 |
+
" docs = reader.load_data()\n",
|
| 143 |
+
" if verbose:\n",
|
| 144 |
+
" print(f\"Loaded {len(docs)} docs\")\n",
|
| 145 |
+
"\n",
|
| 146 |
+
" parser = SentenceSplitter()\n",
|
| 147 |
+
" nodes = parser.get_nodes_from_documents(docs, show_progress=verbose)\n",
|
| 148 |
+
"\n",
|
| 149 |
+
" if verbose:\n",
|
| 150 |
+
" print(f\"Parsed {len(nodes)} nodes\")\n",
|
| 151 |
+
"\n",
|
| 152 |
+
" return nodes"
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"cell_type": "code",
|
| 157 |
+
"execution_count": null,
|
| 158 |
+
"id": "a6ba52e5-4d7f-4c30-8979-8d84a1bc3ca4",
|
| 159 |
+
"metadata": {},
|
| 160 |
+
"outputs": [],
|
| 161 |
+
"source": []
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "code",
|
| 165 |
+
"execution_count": 11,
|
| 166 |
+
"id": "84cc4308-8ac4-4eba-9478-b81d5b645c48",
|
| 167 |
+
"metadata": {},
|
| 168 |
+
"outputs": [
|
| 169 |
+
{
|
| 170 |
+
"name": "stdout",
|
| 171 |
+
"output_type": "stream",
|
| 172 |
+
"text": [
|
| 173 |
+
"load qa embedding training pairs from saved corpus file..\n",
|
| 174 |
+
"load qa embedding validation pairs from saved corpus file..\n"
|
| 175 |
+
]
|
| 176 |
+
}
|
| 177 |
+
],
|
| 178 |
+
"source": [
|
| 179 |
+
"if not os.path.exists(TRAIN_CORPUS_FPATH):\n",
|
| 180 |
+
" train_nodes = load_corpus(TRAIN_FILES, verbose=True)\n",
|
| 181 |
+
" print(\"generating qa embedding pairs for training data..\")\n",
|
| 182 |
+
" train_dataset = generate_qa_embedding_pairs(\n",
|
| 183 |
+
" llm=OpenAI(model=\"gpt-3.5-turbo-1106\"), nodes=train_nodes\n",
|
| 184 |
+
" )\n",
|
| 185 |
+
" train_dataset.save_json(TRAIN_CORPUS_FPATH)\n",
|
| 186 |
+
"else:\n",
|
| 187 |
+
" print(\"load qa embedding training pairs from saved corpus file..\")\n",
|
| 188 |
+
" train_dataset = EmbeddingQAFinetuneDataset.from_json(TRAIN_CORPUS_FPATH)\n",
|
| 189 |
+
"\n",
|
| 190 |
+
"if not os.path.exists(VAL_CORPUS_FPATH):\n",
|
| 191 |
+
" val_nodes = load_corpus(VAL_FILES, verbose=True)\n",
|
| 192 |
+
" print(\"generating qa embedding pairs for validation data..\")\n",
|
| 193 |
+
" val_dataset = generate_qa_embedding_pairs(\n",
|
| 194 |
+
" llm=OpenAI(model=\"gpt-3.5-turbo-1106\"), nodes=val_nodes\n",
|
| 195 |
+
" )\n",
|
| 196 |
+
" val_dataset.save_json(VAL_CORPUS_FPATH)\n",
|
| 197 |
+
"else:\n",
|
| 198 |
+
" print(\"load qa embedding validation pairs from saved corpus file..\")\n",
|
| 199 |
+
" val_dataset = EmbeddingQAFinetuneDataset.from_json(VAL_CORPUS_FPATH)"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": null,
|
| 205 |
+
"id": "c3399443-5936-4dfe-b0ec-821d222e734d",
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"outputs": [],
|
| 208 |
+
"source": []
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "code",
|
| 212 |
+
"execution_count": 12,
|
| 213 |
+
"id": "8f17c832-e9ae-477b-8bf7-a9c8410f1ed8",
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [
|
| 216 |
+
{
|
| 217 |
+
"data": {
|
| 218 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 219 |
+
"model_id": "19241142d8534d139252ffe078559bb7",
|
| 220 |
+
"version_major": 2,
|
| 221 |
+
"version_minor": 0
|
| 222 |
+
},
|
| 223 |
+
"text/plain": [
|
| 224 |
+
"README.md: 0%| | 0.00/94.8k [00:00<?, ?B/s]"
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
"metadata": {},
|
| 228 |
+
"output_type": "display_data"
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"source": [
|
| 232 |
+
"finetune_engine = SentenceTransformersFinetuneEngine(\n",
|
| 233 |
+
" train_dataset,\n",
|
| 234 |
+
" model_id=\"BAAI/bge-small-en-v1.5\",\n",
|
| 235 |
+
" model_output_path=\"../models/fine-tuned-embeddings-advanced\",\n",
|
| 236 |
+
" batch_size=5,\n",
|
| 237 |
+
" val_dataset=val_dataset\n",
|
| 238 |
+
")"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "code",
|
| 243 |
+
"execution_count": 13,
|
| 244 |
+
"id": "a6498d0b-da9a-4f7f-8c85-c9bf4d772c72",
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [
|
| 247 |
+
{
|
| 248 |
+
"data": {
|
| 249 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 250 |
+
"model_id": "2c10018eda384f49a220c4fa66738fe1",
|
| 251 |
+
"version_major": 2,
|
| 252 |
+
"version_minor": 0
|
| 253 |
+
},
|
| 254 |
+
"text/plain": [
|
| 255 |
+
"Epoch: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 256 |
+
]
|
| 257 |
+
},
|
| 258 |
+
"metadata": {},
|
| 259 |
+
"output_type": "display_data"
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"data": {
|
| 263 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 264 |
+
"model_id": "5f4e5628b306450eab01e3af1ebdaf28",
|
| 265 |
+
"version_major": 2,
|
| 266 |
+
"version_minor": 0
|
| 267 |
+
},
|
| 268 |
+
"text/plain": [
|
| 269 |
+
"Iteration: 0%| | 0/268 [00:00<?, ?it/s]"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
"metadata": {},
|
| 273 |
+
"output_type": "display_data"
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"data": {
|
| 277 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 278 |
+
"model_id": "bce2bb08b15548f8afd8fd878f2009a4",
|
| 279 |
+
"version_major": 2,
|
| 280 |
+
"version_minor": 0
|
| 281 |
+
},
|
| 282 |
+
"text/plain": [
|
| 283 |
+
"Iteration: 0%| | 0/268 [00:00<?, ?it/s]"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"output_type": "display_data"
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"source": [
|
| 291 |
+
"finetune_engine.finetune()"
|
| 292 |
+
]
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"cell_type": "code",
|
| 296 |
+
"execution_count": 14,
|
| 297 |
+
"id": "e057b405-aa0e-4e78-91e0-9bf40f01c1a9",
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [],
|
| 300 |
+
"source": [
|
| 301 |
+
"embed_model = finetune_engine.get_finetuned_model()"
|
| 302 |
+
]
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"cell_type": "code",
|
| 306 |
+
"execution_count": 15,
|
| 307 |
+
"id": "72d9f97a-0902-4e65-8459-b34613e419f6",
|
| 308 |
+
"metadata": {},
|
| 309 |
+
"outputs": [
|
| 310 |
+
{
|
| 311 |
+
"data": {
|
| 312 |
+
"text/plain": [
|
| 313 |
+
"HuggingFaceEmbedding(model_name='../models/fine-tuned-embeddings-advanced', embed_batch_size=10, callback_manager=<llama_index.core.callbacks.base.CallbackManager object at 0x29f61adf0>, tokenizer_name='../models/fine-tuned-embeddings-advanced', max_length=512, pooling=<Pooling.CLS: 'cls'>, normalize=True, query_instruction=None, text_instruction=None, cache_folder=None)"
|
| 314 |
+
]
|
| 315 |
+
},
|
| 316 |
+
"execution_count": 15,
|
| 317 |
+
"metadata": {},
|
| 318 |
+
"output_type": "execute_result"
|
| 319 |
+
}
|
| 320 |
+
],
|
| 321 |
+
"source": [
|
| 322 |
+
"embed_model"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"cell_type": "code",
|
| 327 |
+
"execution_count": null,
|
| 328 |
+
"id": "c4f4058c-edbb-43c4-bebe-8c36d410e819",
|
| 329 |
+
"metadata": {},
|
| 330 |
+
"outputs": [],
|
| 331 |
+
"source": []
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"cell_type": "code",
|
| 335 |
+
"execution_count": 16,
|
| 336 |
+
"id": "97ebae28-80ef-4f35-92ce-a370776e3b22",
|
| 337 |
+
"metadata": {},
|
| 338 |
+
"outputs": [],
|
| 339 |
+
"source": [
|
| 340 |
+
"fine_tuned_embed_model = SentenceTransformer(\"../models/fine-tuned-embeddings-advanced\")"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": null,
|
| 346 |
+
"id": "dad7589f-4855-4432-b710-01aff9c134ee",
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [],
|
| 349 |
+
"source": []
|
| 350 |
+
},
|
| 351 |
+
{
|
| 352 |
+
"cell_type": "code",
|
| 353 |
+
"execution_count": 17,
|
| 354 |
+
"id": "ac4a1a5b-974d-452e-8507-0950c962f9b2",
|
| 355 |
+
"metadata": {},
|
| 356 |
+
"outputs": [],
|
| 357 |
+
"source": [
|
| 358 |
+
"def evaluate(\n",
|
| 359 |
+
" dataset,\n",
|
| 360 |
+
" embed_model,\n",
|
| 361 |
+
" top_k=5,\n",
|
| 362 |
+
" verbose=False,\n",
|
| 363 |
+
"):\n",
|
| 364 |
+
" corpus = dataset.corpus\n",
|
| 365 |
+
" queries = dataset.queries\n",
|
| 366 |
+
" relevant_docs = dataset.relevant_docs\n",
|
| 367 |
+
"\n",
|
| 368 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n",
|
| 369 |
+
" nodes = [TextNode(id_=id_, text=text) for id_, text in corpus.items()]\n",
|
| 370 |
+
" index = VectorStoreIndex(\n",
|
| 371 |
+
" nodes, service_context=service_context, show_progress=True\n",
|
| 372 |
+
" )\n",
|
| 373 |
+
" retriever = index.as_retriever(similarity_top_k=top_k)\n",
|
| 374 |
+
"\n",
|
| 375 |
+
" eval_results = []\n",
|
| 376 |
+
" for query_id, query in tqdm(queries.items()):\n",
|
| 377 |
+
" retrieved_nodes = retriever.retrieve(query)\n",
|
| 378 |
+
" retrieved_ids = [node.node.node_id for node in retrieved_nodes]\n",
|
| 379 |
+
" expected_id = relevant_docs[query_id][0]\n",
|
| 380 |
+
" is_hit = expected_id in retrieved_ids # assume 1 relevant doc\n",
|
| 381 |
+
"\n",
|
| 382 |
+
" eval_result = {\n",
|
| 383 |
+
" \"is_hit\": is_hit,\n",
|
| 384 |
+
" \"retrieved\": retrieved_ids,\n",
|
| 385 |
+
" \"expected\": expected_id,\n",
|
| 386 |
+
" \"query\": query_id,\n",
|
| 387 |
+
" }\n",
|
| 388 |
+
" eval_results.append(eval_result)\n",
|
| 389 |
+
" return eval_results"
|
| 390 |
+
]
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"cell_type": "code",
|
| 394 |
+
"execution_count": 18,
|
| 395 |
+
"id": "a53cf893-ce9f-4d9d-ad4a-e9e17fb058d3",
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"outputs": [],
|
| 398 |
+
"source": [
|
| 399 |
+
"def evaluate_st(\n",
|
| 400 |
+
" dataset,\n",
|
| 401 |
+
" model_id,\n",
|
| 402 |
+
" name,\n",
|
| 403 |
+
"):\n",
|
| 404 |
+
" corpus = dataset.corpus\n",
|
| 405 |
+
" queries = dataset.queries\n",
|
| 406 |
+
" relevant_docs = dataset.relevant_docs\n",
|
| 407 |
+
"\n",
|
| 408 |
+
" evaluator = InformationRetrievalEvaluator(\n",
|
| 409 |
+
" queries, corpus, relevant_docs, name=name\n",
|
| 410 |
+
" )\n",
|
| 411 |
+
" model = SentenceTransformer(model_id)\n",
|
| 412 |
+
" output_path = \"../results/\"\n",
|
| 413 |
+
" Path(output_path).mkdir(exist_ok=True, parents=True)\n",
|
| 414 |
+
" return evaluator(model, output_path=output_path)"
|
| 415 |
+
]
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"cell_type": "code",
|
| 419 |
+
"execution_count": null,
|
| 420 |
+
"id": "703f9350-f7ab-43cc-abdf-055323ef67dd",
|
| 421 |
+
"metadata": {},
|
| 422 |
+
"outputs": [],
|
| 423 |
+
"source": []
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"cell_type": "code",
|
| 427 |
+
"execution_count": null,
|
| 428 |
+
"id": "57d66621-49e6-4a8a-9ef2-83b2b33e33d7",
|
| 429 |
+
"metadata": {},
|
| 430 |
+
"outputs": [],
|
| 431 |
+
"source": []
|
| 432 |
+
},
|
| 433 |
+
{
|
| 434 |
+
"cell_type": "markdown",
|
| 435 |
+
"id": "b43ad08e-e96d-412b-9a88-14fe3af85b3d",
|
| 436 |
+
"metadata": {},
|
| 437 |
+
"source": [
|
| 438 |
+
"### Using OpenAI Ada embedding"
|
| 439 |
+
]
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"cell_type": "code",
|
| 443 |
+
"execution_count": 19,
|
| 444 |
+
"id": "91f057aa-4b59-48ea-b3d5-23012a4d487f",
|
| 445 |
+
"metadata": {},
|
| 446 |
+
"outputs": [
|
| 447 |
+
{
|
| 448 |
+
"name": "stderr",
|
| 449 |
+
"output_type": "stream",
|
| 450 |
+
"text": [
|
| 451 |
+
"/var/folders/9p/zqv8rk793ts9cxxfr66p40sh0000gn/T/ipykernel_34681/2760886022.py:11: DeprecationWarning: Call to deprecated class method from_defaults. (ServiceContext is deprecated, please use `llama_index.settings.Settings` instead.) -- Deprecated since version 0.10.0.\n",
|
| 452 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n"
|
| 453 |
+
]
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"data": {
|
| 457 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 458 |
+
"model_id": "3cd092342b1846ed9aa81f8de44eaaea",
|
| 459 |
+
"version_major": 2,
|
| 460 |
+
"version_minor": 0
|
| 461 |
+
},
|
| 462 |
+
"text/plain": [
|
| 463 |
+
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
| 464 |
+
]
|
| 465 |
+
},
|
| 466 |
+
"metadata": {},
|
| 467 |
+
"output_type": "display_data"
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"name": "stderr",
|
| 471 |
+
"output_type": "stream",
|
| 472 |
+
"text": [
|
| 473 |
+
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
| 474 |
+
"To disable this warning, you can either:\n",
|
| 475 |
+
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
| 476 |
+
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
| 477 |
+
]
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"data": {
|
| 481 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 482 |
+
"model_id": "00a72686c4bc4e518e8c7f56124247ab",
|
| 483 |
+
"version_major": 2,
|
| 484 |
+
"version_minor": 0
|
| 485 |
+
},
|
| 486 |
+
"text/plain": [
|
| 487 |
+
" 0%| | 0/200 [00:00<?, ?it/s]"
|
| 488 |
+
]
|
| 489 |
+
},
|
| 490 |
+
"metadata": {},
|
| 491 |
+
"output_type": "display_data"
|
| 492 |
+
}
|
| 493 |
+
],
|
| 494 |
+
"source": [
|
| 495 |
+
"ada = OpenAIEmbedding()\n",
|
| 496 |
+
"ada_val_results = evaluate(val_dataset, ada)"
|
| 497 |
+
]
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"cell_type": "code",
|
| 501 |
+
"execution_count": 20,
|
| 502 |
+
"id": "5d2f59c6-75d3-4970-bac3-dfe0eef00efe",
|
| 503 |
+
"metadata": {},
|
| 504 |
+
"outputs": [],
|
| 505 |
+
"source": [
|
| 506 |
+
"df_ada = pd.DataFrame(ada_val_results)"
|
| 507 |
+
]
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"cell_type": "code",
|
| 511 |
+
"execution_count": 21,
|
| 512 |
+
"id": "7a697cd8-6f39-4d5b-84f4-f08cf58adc4a",
|
| 513 |
+
"metadata": {},
|
| 514 |
+
"outputs": [
|
| 515 |
+
{
|
| 516 |
+
"data": {
|
| 517 |
+
"text/html": [
|
| 518 |
+
"<div>\n",
|
| 519 |
+
"<style scoped>\n",
|
| 520 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 521 |
+
" vertical-align: middle;\n",
|
| 522 |
+
" }\n",
|
| 523 |
+
"\n",
|
| 524 |
+
" .dataframe tbody tr th {\n",
|
| 525 |
+
" vertical-align: top;\n",
|
| 526 |
+
" }\n",
|
| 527 |
+
"\n",
|
| 528 |
+
" .dataframe thead th {\n",
|
| 529 |
+
" text-align: right;\n",
|
| 530 |
+
" }\n",
|
| 531 |
+
"</style>\n",
|
| 532 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 533 |
+
" <thead>\n",
|
| 534 |
+
" <tr style=\"text-align: right;\">\n",
|
| 535 |
+
" <th></th>\n",
|
| 536 |
+
" <th>is_hit</th>\n",
|
| 537 |
+
" <th>retrieved</th>\n",
|
| 538 |
+
" <th>expected</th>\n",
|
| 539 |
+
" <th>query</th>\n",
|
| 540 |
+
" </tr>\n",
|
| 541 |
+
" </thead>\n",
|
| 542 |
+
" <tbody>\n",
|
| 543 |
+
" <tr>\n",
|
| 544 |
+
" <th>0</th>\n",
|
| 545 |
+
" <td>False</td>\n",
|
| 546 |
+
" <td>[5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804...</td>\n",
|
| 547 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 548 |
+
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
| 549 |
+
" </tr>\n",
|
| 550 |
+
" <tr>\n",
|
| 551 |
+
" <th>1</th>\n",
|
| 552 |
+
" <td>True</td>\n",
|
| 553 |
+
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804...</td>\n",
|
| 554 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 555 |
+
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
| 556 |
+
" </tr>\n",
|
| 557 |
+
" <tr>\n",
|
| 558 |
+
" <th>2</th>\n",
|
| 559 |
+
" <td>True</td>\n",
|
| 560 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
| 561 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 562 |
+
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
| 563 |
+
" </tr>\n",
|
| 564 |
+
" <tr>\n",
|
| 565 |
+
" <th>3</th>\n",
|
| 566 |
+
" <td>True</td>\n",
|
| 567 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
| 568 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 569 |
+
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
| 570 |
+
" </tr>\n",
|
| 571 |
+
" <tr>\n",
|
| 572 |
+
" <th>4</th>\n",
|
| 573 |
+
" <td>True</td>\n",
|
| 574 |
+
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
| 575 |
+
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
| 576 |
+
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
| 577 |
+
" </tr>\n",
|
| 578 |
+
" </tbody>\n",
|
| 579 |
+
"</table>\n",
|
| 580 |
+
"</div>"
|
| 581 |
+
],
|
| 582 |
+
"text/plain": [
|
| 583 |
+
" is_hit retrieved \\\n",
|
| 584 |
+
"0 False [5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804... \n",
|
| 585 |
+
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804... \n",
|
| 586 |
+
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
| 587 |
+
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
| 588 |
+
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
| 589 |
+
"\n",
|
| 590 |
+
" expected query \n",
|
| 591 |
+
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
| 592 |
+
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
| 593 |
+
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
| 594 |
+
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
| 595 |
+
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
| 596 |
+
]
|
| 597 |
+
},
|
| 598 |
+
"execution_count": 21,
|
| 599 |
+
"metadata": {},
|
| 600 |
+
"output_type": "execute_result"
|
| 601 |
+
}
|
| 602 |
+
],
|
| 603 |
+
"source": [
|
| 604 |
+
"df_ada[:5]"
|
| 605 |
+
]
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"cell_type": "code",
|
| 609 |
+
"execution_count": 22,
|
| 610 |
+
"id": "3f7186fb-f392-4531-8959-25161e3905e4",
|
| 611 |
+
"metadata": {},
|
| 612 |
+
"outputs": [
|
| 613 |
+
{
|
| 614 |
+
"data": {
|
| 615 |
+
"text/plain": [
|
| 616 |
+
"(0.95, 200)"
|
| 617 |
+
]
|
| 618 |
+
},
|
| 619 |
+
"execution_count": 22,
|
| 620 |
+
"metadata": {},
|
| 621 |
+
"output_type": "execute_result"
|
| 622 |
+
}
|
| 623 |
+
],
|
| 624 |
+
"source": [
|
| 625 |
+
"hit_rate_ada = df_ada[\"is_hit\"].mean()\n",
|
| 626 |
+
"hit_rate_ada, len(df_ada)"
|
| 627 |
+
]
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"cell_type": "code",
|
| 631 |
+
"execution_count": null,
|
| 632 |
+
"id": "d044399a-e55b-40b7-a09d-6fb838383bfa",
|
| 633 |
+
"metadata": {},
|
| 634 |
+
"outputs": [],
|
| 635 |
+
"source": []
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"cell_type": "markdown",
|
| 639 |
+
"id": "66746f3e-638a-432c-a38d-7cb99d2093f7",
|
| 640 |
+
"metadata": {},
|
| 641 |
+
"source": [
|
| 642 |
+
"### Using BAAI bge-small model without fine-tuning"
|
| 643 |
+
]
|
| 644 |
+
},
|
| 645 |
+
{
|
| 646 |
+
"cell_type": "code",
|
| 647 |
+
"execution_count": 23,
|
| 648 |
+
"id": "b2905831-0eb9-4ea7-a0b9-5db286b0965e",
|
| 649 |
+
"metadata": {},
|
| 650 |
+
"outputs": [
|
| 651 |
+
{
|
| 652 |
+
"name": "stderr",
|
| 653 |
+
"output_type": "stream",
|
| 654 |
+
"text": [
|
| 655 |
+
"/var/folders/9p/zqv8rk793ts9cxxfr66p40sh0000gn/T/ipykernel_34681/2760886022.py:11: DeprecationWarning: Call to deprecated class method from_defaults. (ServiceContext is deprecated, please use `llama_index.settings.Settings` instead.) -- Deprecated since version 0.10.0.\n",
|
| 656 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n"
|
| 657 |
+
]
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"data": {
|
| 661 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 662 |
+
"model_id": "ca1ac4b4b54f4169b909e5633b3eb1ad",
|
| 663 |
+
"version_major": 2,
|
| 664 |
+
"version_minor": 0
|
| 665 |
+
},
|
| 666 |
+
"text/plain": [
|
| 667 |
+
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
| 668 |
+
]
|
| 669 |
+
},
|
| 670 |
+
"metadata": {},
|
| 671 |
+
"output_type": "display_data"
|
| 672 |
+
},
|
| 673 |
+
{
|
| 674 |
+
"data": {
|
| 675 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 676 |
+
"model_id": "4293592aba3244a991fad843f5c881ba",
|
| 677 |
+
"version_major": 2,
|
| 678 |
+
"version_minor": 0
|
| 679 |
+
},
|
| 680 |
+
"text/plain": [
|
| 681 |
+
" 0%| | 0/200 [00:00<?, ?it/s]"
|
| 682 |
+
]
|
| 683 |
+
},
|
| 684 |
+
"metadata": {},
|
| 685 |
+
"output_type": "display_data"
|
| 686 |
+
}
|
| 687 |
+
],
|
| 688 |
+
"source": [
|
| 689 |
+
"bge = \"local:BAAI/bge-small-en-v1.5\"\n",
|
| 690 |
+
"bge_val_results = evaluate(val_dataset, bge)"
|
| 691 |
+
]
|
| 692 |
+
},
|
| 693 |
+
{
|
| 694 |
+
"cell_type": "code",
|
| 695 |
+
"execution_count": 24,
|
| 696 |
+
"id": "4e66270d-d3f6-429e-9e48-e8062866aa02",
|
| 697 |
+
"metadata": {},
|
| 698 |
+
"outputs": [],
|
| 699 |
+
"source": [
|
| 700 |
+
"df_bge = pd.DataFrame(bge_val_results)"
|
| 701 |
+
]
|
| 702 |
+
},
|
| 703 |
+
{
|
| 704 |
+
"cell_type": "code",
|
| 705 |
+
"execution_count": 25,
|
| 706 |
+
"id": "698c1eb7-eba4-4383-98aa-931fc4ad56a4",
|
| 707 |
+
"metadata": {},
|
| 708 |
+
"outputs": [
|
| 709 |
+
{
|
| 710 |
+
"data": {
|
| 711 |
+
"text/html": [
|
| 712 |
+
"<div>\n",
|
| 713 |
+
"<style scoped>\n",
|
| 714 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 715 |
+
" vertical-align: middle;\n",
|
| 716 |
+
" }\n",
|
| 717 |
+
"\n",
|
| 718 |
+
" .dataframe tbody tr th {\n",
|
| 719 |
+
" vertical-align: top;\n",
|
| 720 |
+
" }\n",
|
| 721 |
+
"\n",
|
| 722 |
+
" .dataframe thead th {\n",
|
| 723 |
+
" text-align: right;\n",
|
| 724 |
+
" }\n",
|
| 725 |
+
"</style>\n",
|
| 726 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 727 |
+
" <thead>\n",
|
| 728 |
+
" <tr style=\"text-align: right;\">\n",
|
| 729 |
+
" <th></th>\n",
|
| 730 |
+
" <th>is_hit</th>\n",
|
| 731 |
+
" <th>retrieved</th>\n",
|
| 732 |
+
" <th>expected</th>\n",
|
| 733 |
+
" <th>query</th>\n",
|
| 734 |
+
" </tr>\n",
|
| 735 |
+
" </thead>\n",
|
| 736 |
+
" <tbody>\n",
|
| 737 |
+
" <tr>\n",
|
| 738 |
+
" <th>0</th>\n",
|
| 739 |
+
" <td>False</td>\n",
|
| 740 |
+
" <td>[69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7...</td>\n",
|
| 741 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 742 |
+
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
| 743 |
+
" </tr>\n",
|
| 744 |
+
" <tr>\n",
|
| 745 |
+
" <th>1</th>\n",
|
| 746 |
+
" <td>True</td>\n",
|
| 747 |
+
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649...</td>\n",
|
| 748 |
+
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 749 |
+
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
| 750 |
+
" </tr>\n",
|
| 751 |
+
" <tr>\n",
|
| 752 |
+
" <th>2</th>\n",
|
| 753 |
+
" <td>True</td>\n",
|
| 754 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
| 755 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 756 |
+
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
| 757 |
+
" </tr>\n",
|
| 758 |
+
" <tr>\n",
|
| 759 |
+
" <th>3</th>\n",
|
| 760 |
+
" <td>True</td>\n",
|
| 761 |
+
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb...</td>\n",
|
| 762 |
+
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 763 |
+
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
| 764 |
+
" </tr>\n",
|
| 765 |
+
" <tr>\n",
|
| 766 |
+
" <th>4</th>\n",
|
| 767 |
+
" <td>True</td>\n",
|
| 768 |
+
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
| 769 |
+
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
| 770 |
+
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
| 771 |
+
" </tr>\n",
|
| 772 |
+
" </tbody>\n",
|
| 773 |
+
"</table>\n",
|
| 774 |
+
"</div>"
|
| 775 |
+
],
|
| 776 |
+
"text/plain": [
|
| 777 |
+
" is_hit retrieved \\\n",
|
| 778 |
+
"0 False [69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7... \n",
|
| 779 |
+
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649... \n",
|
| 780 |
+
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
| 781 |
+
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb... \n",
|
| 782 |
+
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
| 783 |
+
"\n",
|
| 784 |
+
" expected query \n",
|
| 785 |
+
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
| 786 |
+
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
| 787 |
+
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
| 788 |
+
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
| 789 |
+
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
| 790 |
+
]
|
| 791 |
+
},
|
| 792 |
+
"execution_count": 25,
|
| 793 |
+
"metadata": {},
|
| 794 |
+
"output_type": "execute_result"
|
| 795 |
+
}
|
| 796 |
+
],
|
| 797 |
+
"source": [
|
| 798 |
+
"df_bge[:5]"
|
| 799 |
+
]
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"cell_type": "code",
|
| 803 |
+
"execution_count": 26,
|
| 804 |
+
"id": "9b1cb546-4605-4c48-bf4e-df812db97f13",
|
| 805 |
+
"metadata": {},
|
| 806 |
+
"outputs": [
|
| 807 |
+
{
|
| 808 |
+
"data": {
|
| 809 |
+
"text/plain": [
|
| 810 |
+
"(0.915, 200)"
|
| 811 |
+
]
|
| 812 |
+
},
|
| 813 |
+
"execution_count": 26,
|
| 814 |
+
"metadata": {},
|
| 815 |
+
"output_type": "execute_result"
|
| 816 |
+
}
|
| 817 |
+
],
|
| 818 |
+
"source": [
|
| 819 |
+
"hit_rate_bge = df_bge[\"is_hit\"].mean()\n",
|
| 820 |
+
"hit_rate_bge, len(df_bge)"
|
| 821 |
+
]
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"cell_type": "code",
|
| 825 |
+
"execution_count": null,
|
| 826 |
+
"id": "7dd69ad1-2153-4df0-93f7-807fc289d3fd",
|
| 827 |
+
"metadata": {},
|
| 828 |
+
"outputs": [],
|
| 829 |
+
"source": []
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"cell_type": "code",
|
| 833 |
+
"execution_count": 27,
|
| 834 |
+
"id": "1b12ca3d-6ca2-41f6-9ddb-b12b9354ca83",
|
| 835 |
+
"metadata": {},
|
| 836 |
+
"outputs": [
|
| 837 |
+
{
|
| 838 |
+
"data": {
|
| 839 |
+
"text/plain": [
|
| 840 |
+
"0.7955697668171072"
|
| 841 |
+
]
|
| 842 |
+
},
|
| 843 |
+
"execution_count": 27,
|
| 844 |
+
"metadata": {},
|
| 845 |
+
"output_type": "execute_result"
|
| 846 |
+
}
|
| 847 |
+
],
|
| 848 |
+
"source": [
|
| 849 |
+
"evaluate_st(val_dataset, \"BAAI/bge-small-en-v1.5\", name=\"bge\")"
|
| 850 |
+
]
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"cell_type": "code",
|
| 854 |
+
"execution_count": null,
|
| 855 |
+
"id": "6023382b-0ff5-4d60-aeac-ad523153f943",
|
| 856 |
+
"metadata": {},
|
| 857 |
+
"outputs": [],
|
| 858 |
+
"source": []
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"cell_type": "code",
|
| 862 |
+
"execution_count": null,
|
| 863 |
+
"id": "adf35a2a-3bb7-4251-9521-f35346a7c6e6",
|
| 864 |
+
"metadata": {},
|
| 865 |
+
"outputs": [],
|
| 866 |
+
"source": []
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"cell_type": "markdown",
|
| 870 |
+
"id": "b3d290c2-784f-4c41-a258-e11d2c5117e7",
|
| 871 |
+
"metadata": {},
|
| 872 |
+
"source": [
|
| 873 |
+
"### Using BAAI bge-small model with `fine-tuning`"
|
| 874 |
+
]
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"cell_type": "code",
|
| 878 |
+
"execution_count": 28,
|
| 879 |
+
"id": "bd42b288-1f1f-41aa-9fd4-1ae4b1df462b",
|
| 880 |
+
"metadata": {},
|
| 881 |
+
"outputs": [
|
| 882 |
+
{
|
| 883 |
+
"name": "stderr",
|
| 884 |
+
"output_type": "stream",
|
| 885 |
+
"text": [
|
| 886 |
+
"/var/folders/9p/zqv8rk793ts9cxxfr66p40sh0000gn/T/ipykernel_34681/2760886022.py:11: DeprecationWarning: Call to deprecated class method from_defaults. (ServiceContext is deprecated, please use `llama_index.settings.Settings` instead.) -- Deprecated since version 0.10.0.\n",
|
| 887 |
+
" service_context = ServiceContext.from_defaults(embed_model=embed_model)\n"
|
| 888 |
+
]
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"data": {
|
| 892 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 893 |
+
"model_id": "9ddb31814f674c658e4b509c45104c7a",
|
| 894 |
+
"version_major": 2,
|
| 895 |
+
"version_minor": 0
|
| 896 |
+
},
|
| 897 |
+
"text/plain": [
|
| 898 |
+
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
| 899 |
+
]
|
| 900 |
+
},
|
| 901 |
+
"metadata": {},
|
| 902 |
+
"output_type": "display_data"
|
| 903 |
+
},
|
| 904 |
+
{
|
| 905 |
+
"data": {
|
| 906 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 907 |
+
"model_id": "6e781eff650b4cd28345ed4a0c919a28",
|
| 908 |
+
"version_major": 2,
|
| 909 |
+
"version_minor": 0
|
| 910 |
+
},
|
| 911 |
+
"text/plain": [
|
| 912 |
+
" 0%| | 0/200 [00:00<?, ?it/s]"
|
| 913 |
+
]
|
| 914 |
+
},
|
| 915 |
+
"metadata": {},
|
| 916 |
+
"output_type": "display_data"
|
| 917 |
+
}
|
| 918 |
+
],
|
| 919 |
+
"source": [
|
| 920 |
+
"finetuned = \"local:../models/fine-tuned-embeddings-advanced\"\n",
|
| 921 |
+
"val_results_finetuned = evaluate(val_dataset, finetuned)"
|
| 922 |
+
]
|
| 923 |
+
},
|
| 924 |
+
{
|
| 925 |
+
"cell_type": "code",
|
| 926 |
+
"execution_count": 29,
|
| 927 |
+
"id": "b1d7112d-b1b8-47db-8a4b-6c024ef99dd6",
|
| 928 |
+
"metadata": {},
|
| 929 |
+
"outputs": [],
|
| 930 |
+
"source": [
|
| 931 |
+
"df_finetuned = pd.DataFrame(val_results_finetuned)"
|
| 932 |
+
]
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"cell_type": "code",
|
| 936 |
+
"execution_count": 30,
|
| 937 |
+
"id": "62a4dd29-0631-4c5b-88e1-be43d48e1043",
|
| 938 |
+
"metadata": {},
|
| 939 |
+
"outputs": [
|
| 940 |
+
{
|
| 941 |
+
"data": {
|
| 942 |
+
"text/plain": [
|
| 943 |
+
"0.97"
|
| 944 |
+
]
|
| 945 |
+
},
|
| 946 |
+
"execution_count": 30,
|
| 947 |
+
"metadata": {},
|
| 948 |
+
"output_type": "execute_result"
|
| 949 |
+
}
|
| 950 |
+
],
|
| 951 |
+
"source": [
|
| 952 |
+
"hit_rate_finetuned = df_finetuned[\"is_hit\"].mean()\n",
|
| 953 |
+
"hit_rate_finetuned"
|
| 954 |
+
]
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"cell_type": "code",
|
| 958 |
+
"execution_count": 31,
|
| 959 |
+
"id": "4332594b-c861-40fb-a58b-ba36717d0519",
|
| 960 |
+
"metadata": {},
|
| 961 |
+
"outputs": [
|
| 962 |
+
{
|
| 963 |
+
"data": {
|
| 964 |
+
"text/plain": [
|
| 965 |
+
"0.8835191391941393"
|
| 966 |
+
]
|
| 967 |
+
},
|
| 968 |
+
"execution_count": 31,
|
| 969 |
+
"metadata": {},
|
| 970 |
+
"output_type": "execute_result"
|
| 971 |
+
}
|
| 972 |
+
],
|
| 973 |
+
"source": [
|
| 974 |
+
"evaluate_st(val_dataset, \"../models/fine-tuned-embeddings-advanced\", name=\"finetuned\")"
|
| 975 |
+
]
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"cell_type": "code",
|
| 979 |
+
"execution_count": null,
|
| 980 |
+
"id": "b0003812-84a2-4ebd-9372-07bf874a486b",
|
| 981 |
+
"metadata": {},
|
| 982 |
+
"outputs": [],
|
| 983 |
+
"source": []
|
| 984 |
+
},
|
| 985 |
+
{
|
| 986 |
+
"cell_type": "markdown",
|
| 987 |
+
"id": "ae7eb6ff-181b-42c8-975c-ca3320158698",
|
| 988 |
+
"metadata": {},
|
| 989 |
+
"source": [
|
| 990 |
+
"### Summary"
|
| 991 |
+
]
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"cell_type": "code",
|
| 995 |
+
"execution_count": 32,
|
| 996 |
+
"id": "3ca46cff-b186-463a-847d-a86c310268ec",
|
| 997 |
+
"metadata": {},
|
| 998 |
+
"outputs": [],
|
| 999 |
+
"source": [
|
| 1000 |
+
"df_ada[\"model\"] = \"ada\"\n",
|
| 1001 |
+
"df_bge[\"model\"] = \"bge\"\n",
|
| 1002 |
+
"df_finetuned[\"model\"] = \"fine_tuned\""
|
| 1003 |
+
]
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"cell_type": "code",
|
| 1007 |
+
"execution_count": 33,
|
| 1008 |
+
"id": "d1d3053e-2395-48a0-af59-fd27180e1e7b",
|
| 1009 |
+
"metadata": {},
|
| 1010 |
+
"outputs": [
|
| 1011 |
+
{
|
| 1012 |
+
"data": {
|
| 1013 |
+
"text/html": [
|
| 1014 |
+
"<div>\n",
|
| 1015 |
+
"<style scoped>\n",
|
| 1016 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1017 |
+
" vertical-align: middle;\n",
|
| 1018 |
+
" }\n",
|
| 1019 |
+
"\n",
|
| 1020 |
+
" .dataframe tbody tr th {\n",
|
| 1021 |
+
" vertical-align: top;\n",
|
| 1022 |
+
" }\n",
|
| 1023 |
+
"\n",
|
| 1024 |
+
" .dataframe thead th {\n",
|
| 1025 |
+
" text-align: right;\n",
|
| 1026 |
+
" }\n",
|
| 1027 |
+
"</style>\n",
|
| 1028 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1029 |
+
" <thead>\n",
|
| 1030 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1031 |
+
" <th></th>\n",
|
| 1032 |
+
" <th>is_hit</th>\n",
|
| 1033 |
+
" </tr>\n",
|
| 1034 |
+
" <tr>\n",
|
| 1035 |
+
" <th>model</th>\n",
|
| 1036 |
+
" <th></th>\n",
|
| 1037 |
+
" </tr>\n",
|
| 1038 |
+
" </thead>\n",
|
| 1039 |
+
" <tbody>\n",
|
| 1040 |
+
" <tr>\n",
|
| 1041 |
+
" <th>ada</th>\n",
|
| 1042 |
+
" <td>0.950</td>\n",
|
| 1043 |
+
" </tr>\n",
|
| 1044 |
+
" <tr>\n",
|
| 1045 |
+
" <th>bge</th>\n",
|
| 1046 |
+
" <td>0.915</td>\n",
|
| 1047 |
+
" </tr>\n",
|
| 1048 |
+
" <tr>\n",
|
| 1049 |
+
" <th>fine_tuned</th>\n",
|
| 1050 |
+
" <td>0.970</td>\n",
|
| 1051 |
+
" </tr>\n",
|
| 1052 |
+
" </tbody>\n",
|
| 1053 |
+
"</table>\n",
|
| 1054 |
+
"</div>"
|
| 1055 |
+
],
|
| 1056 |
+
"text/plain": [
|
| 1057 |
+
" is_hit\n",
|
| 1058 |
+
"model \n",
|
| 1059 |
+
"ada 0.950\n",
|
| 1060 |
+
"bge 0.915\n",
|
| 1061 |
+
"fine_tuned 0.970"
|
| 1062 |
+
]
|
| 1063 |
+
},
|
| 1064 |
+
"execution_count": 33,
|
| 1065 |
+
"metadata": {},
|
| 1066 |
+
"output_type": "execute_result"
|
| 1067 |
+
}
|
| 1068 |
+
],
|
| 1069 |
+
"source": [
|
| 1070 |
+
"df_all = pd.concat([df_ada, df_bge, df_finetuned])\n",
|
| 1071 |
+
"df_all.groupby(\"model\").mean(\"is_hit\")"
|
| 1072 |
+
]
|
| 1073 |
+
},
|
| 1074 |
+
{
|
| 1075 |
+
"cell_type": "code",
|
| 1076 |
+
"execution_count": null,
|
| 1077 |
+
"id": "72575c28-a221-4967-8f04-9579dcefa8f8",
|
| 1078 |
+
"metadata": {},
|
| 1079 |
+
"outputs": [],
|
| 1080 |
+
"source": []
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"cell_type": "code",
|
| 1084 |
+
"execution_count": 35,
|
| 1085 |
+
"id": "032cac38-c856-4aeb-9bbb-6d70ed53c614",
|
| 1086 |
+
"metadata": {},
|
| 1087 |
+
"outputs": [],
|
| 1088 |
+
"source": [
|
| 1089 |
+
"df_st_bge = pd.read_csv(\n",
|
| 1090 |
+
" \"../results/Information-Retrieval_evaluation_bge_results.csv\"\n",
|
| 1091 |
+
")\n",
|
| 1092 |
+
"df_st_finetuned = pd.read_csv(\n",
|
| 1093 |
+
" \"../results/Information-Retrieval_evaluation_finetuned_results.csv\"\n",
|
| 1094 |
+
")"
|
| 1095 |
+
]
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"cell_type": "code",
|
| 1099 |
+
"execution_count": null,
|
| 1100 |
+
"id": "a509f239-8b28-4d0a-9101-c8de91c7943b",
|
| 1101 |
+
"metadata": {},
|
| 1102 |
+
"outputs": [],
|
| 1103 |
+
"source": []
|
| 1104 |
+
},
|
| 1105 |
+
{
|
| 1106 |
+
"cell_type": "code",
|
| 1107 |
+
"execution_count": 36,
|
| 1108 |
+
"id": "d2975262-c486-4a9a-a61f-ea535203a0f3",
|
| 1109 |
+
"metadata": {},
|
| 1110 |
+
"outputs": [
|
| 1111 |
+
{
|
| 1112 |
+
"data": {
|
| 1113 |
+
"text/html": [
|
| 1114 |
+
"<div>\n",
|
| 1115 |
+
"<style scoped>\n",
|
| 1116 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 1117 |
+
" vertical-align: middle;\n",
|
| 1118 |
+
" }\n",
|
| 1119 |
+
"\n",
|
| 1120 |
+
" .dataframe tbody tr th {\n",
|
| 1121 |
+
" vertical-align: top;\n",
|
| 1122 |
+
" }\n",
|
| 1123 |
+
"\n",
|
| 1124 |
+
" .dataframe thead th {\n",
|
| 1125 |
+
" text-align: right;\n",
|
| 1126 |
+
" }\n",
|
| 1127 |
+
"</style>\n",
|
| 1128 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1129 |
+
" <thead>\n",
|
| 1130 |
+
" <tr style=\"text-align: right;\">\n",
|
| 1131 |
+
" <th></th>\n",
|
| 1132 |
+
" <th>epoch</th>\n",
|
| 1133 |
+
" <th>steps</th>\n",
|
| 1134 |
+
" <th>cos_sim-Accuracy@1</th>\n",
|
| 1135 |
+
" <th>cos_sim-Accuracy@3</th>\n",
|
| 1136 |
+
" <th>cos_sim-Accuracy@5</th>\n",
|
| 1137 |
+
" <th>cos_sim-Accuracy@10</th>\n",
|
| 1138 |
+
" <th>cos_sim-Precision@1</th>\n",
|
| 1139 |
+
" <th>cos_sim-Recall@1</th>\n",
|
| 1140 |
+
" <th>cos_sim-Precision@3</th>\n",
|
| 1141 |
+
" <th>cos_sim-Recall@3</th>\n",
|
| 1142 |
+
" <th>...</th>\n",
|
| 1143 |
+
" <th>dot_score-Recall@1</th>\n",
|
| 1144 |
+
" <th>dot_score-Precision@3</th>\n",
|
| 1145 |
+
" <th>dot_score-Recall@3</th>\n",
|
| 1146 |
+
" <th>dot_score-Precision@5</th>\n",
|
| 1147 |
+
" <th>dot_score-Recall@5</th>\n",
|
| 1148 |
+
" <th>dot_score-Precision@10</th>\n",
|
| 1149 |
+
" <th>dot_score-Recall@10</th>\n",
|
| 1150 |
+
" <th>dot_score-MRR@10</th>\n",
|
| 1151 |
+
" <th>dot_score-NDCG@10</th>\n",
|
| 1152 |
+
" <th>dot_score-MAP@100</th>\n",
|
| 1153 |
+
" </tr>\n",
|
| 1154 |
+
" <tr>\n",
|
| 1155 |
+
" <th>model</th>\n",
|
| 1156 |
+
" <th></th>\n",
|
| 1157 |
+
" <th></th>\n",
|
| 1158 |
+
" <th></th>\n",
|
| 1159 |
+
" <th></th>\n",
|
| 1160 |
+
" <th></th>\n",
|
| 1161 |
+
" <th></th>\n",
|
| 1162 |
+
" <th></th>\n",
|
| 1163 |
+
" <th></th>\n",
|
| 1164 |
+
" <th></th>\n",
|
| 1165 |
+
" <th></th>\n",
|
| 1166 |
+
" <th></th>\n",
|
| 1167 |
+
" <th></th>\n",
|
| 1168 |
+
" <th></th>\n",
|
| 1169 |
+
" <th></th>\n",
|
| 1170 |
+
" <th></th>\n",
|
| 1171 |
+
" <th></th>\n",
|
| 1172 |
+
" <th></th>\n",
|
| 1173 |
+
" <th></th>\n",
|
| 1174 |
+
" <th></th>\n",
|
| 1175 |
+
" <th></th>\n",
|
| 1176 |
+
" <th></th>\n",
|
| 1177 |
+
" </tr>\n",
|
| 1178 |
+
" </thead>\n",
|
| 1179 |
+
" <tbody>\n",
|
| 1180 |
+
" <tr>\n",
|
| 1181 |
+
" <th>bge</th>\n",
|
| 1182 |
+
" <td>-1</td>\n",
|
| 1183 |
+
" <td>-1</td>\n",
|
| 1184 |
+
" <td>0.705</td>\n",
|
| 1185 |
+
" <td>0.865</td>\n",
|
| 1186 |
+
" <td>0.920</td>\n",
|
| 1187 |
+
" <td>0.96</td>\n",
|
| 1188 |
+
" <td>0.705</td>\n",
|
| 1189 |
+
" <td>0.705</td>\n",
|
| 1190 |
+
" <td>0.288333</td>\n",
|
| 1191 |
+
" <td>0.865</td>\n",
|
| 1192 |
+
" <td>...</td>\n",
|
| 1193 |
+
" <td>0.705</td>\n",
|
| 1194 |
+
" <td>0.288333</td>\n",
|
| 1195 |
+
" <td>0.865</td>\n",
|
| 1196 |
+
" <td>0.184</td>\n",
|
| 1197 |
+
" <td>0.920</td>\n",
|
| 1198 |
+
" <td>0.096</td>\n",
|
| 1199 |
+
" <td>0.96</td>\n",
|
| 1200 |
+
" <td>0.792935</td>\n",
|
| 1201 |
+
" <td>0.833595</td>\n",
|
| 1202 |
+
" <td>0.795570</td>\n",
|
| 1203 |
+
" </tr>\n",
|
| 1204 |
+
" <tr>\n",
|
| 1205 |
+
" <th>bge</th>\n",
|
| 1206 |
+
" <td>-1</td>\n",
|
| 1207 |
+
" <td>-1</td>\n",
|
| 1208 |
+
" <td>0.705</td>\n",
|
| 1209 |
+
" <td>0.865</td>\n",
|
| 1210 |
+
" <td>0.920</td>\n",
|
| 1211 |
+
" <td>0.96</td>\n",
|
| 1212 |
+
" <td>0.705</td>\n",
|
| 1213 |
+
" <td>0.705</td>\n",
|
| 1214 |
+
" <td>0.288333</td>\n",
|
| 1215 |
+
" <td>0.865</td>\n",
|
| 1216 |
+
" <td>...</td>\n",
|
| 1217 |
+
" <td>0.705</td>\n",
|
| 1218 |
+
" <td>0.288333</td>\n",
|
| 1219 |
+
" <td>0.865</td>\n",
|
| 1220 |
+
" <td>0.184</td>\n",
|
| 1221 |
+
" <td>0.920</td>\n",
|
| 1222 |
+
" <td>0.096</td>\n",
|
| 1223 |
+
" <td>0.96</td>\n",
|
| 1224 |
+
" <td>0.792935</td>\n",
|
| 1225 |
+
" <td>0.833595</td>\n",
|
| 1226 |
+
" <td>0.795570</td>\n",
|
| 1227 |
+
" </tr>\n",
|
| 1228 |
+
" <tr>\n",
|
| 1229 |
+
" <th>bge</th>\n",
|
| 1230 |
+
" <td>-1</td>\n",
|
| 1231 |
+
" <td>-1</td>\n",
|
| 1232 |
+
" <td>0.705</td>\n",
|
| 1233 |
+
" <td>0.865</td>\n",
|
| 1234 |
+
" <td>0.920</td>\n",
|
| 1235 |
+
" <td>0.96</td>\n",
|
| 1236 |
+
" <td>0.705</td>\n",
|
| 1237 |
+
" <td>0.705</td>\n",
|
| 1238 |
+
" <td>0.288333</td>\n",
|
| 1239 |
+
" <td>0.865</td>\n",
|
| 1240 |
+
" <td>...</td>\n",
|
| 1241 |
+
" <td>0.705</td>\n",
|
| 1242 |
+
" <td>0.288333</td>\n",
|
| 1243 |
+
" <td>0.865</td>\n",
|
| 1244 |
+
" <td>0.184</td>\n",
|
| 1245 |
+
" <td>0.920</td>\n",
|
| 1246 |
+
" <td>0.096</td>\n",
|
| 1247 |
+
" <td>0.96</td>\n",
|
| 1248 |
+
" <td>0.792935</td>\n",
|
| 1249 |
+
" <td>0.833595</td>\n",
|
| 1250 |
+
" <td>0.795570</td>\n",
|
| 1251 |
+
" </tr>\n",
|
| 1252 |
+
" <tr>\n",
|
| 1253 |
+
" <th>fine_tuned</th>\n",
|
| 1254 |
+
" <td>-1</td>\n",
|
| 1255 |
+
" <td>-1</td>\n",
|
| 1256 |
+
" <td>0.790</td>\n",
|
| 1257 |
+
" <td>0.900</td>\n",
|
| 1258 |
+
" <td>0.970</td>\n",
|
| 1259 |
+
" <td>0.98</td>\n",
|
| 1260 |
+
" <td>0.790</td>\n",
|
| 1261 |
+
" <td>0.790</td>\n",
|
| 1262 |
+
" <td>0.300000</td>\n",
|
| 1263 |
+
" <td>0.900</td>\n",
|
| 1264 |
+
" <td>...</td>\n",
|
| 1265 |
+
" <td>0.790</td>\n",
|
| 1266 |
+
" <td>0.300000</td>\n",
|
| 1267 |
+
" <td>0.900</td>\n",
|
| 1268 |
+
" <td>0.194</td>\n",
|
| 1269 |
+
" <td>0.970</td>\n",
|
| 1270 |
+
" <td>0.098</td>\n",
|
| 1271 |
+
" <td>0.98</td>\n",
|
| 1272 |
+
" <td>0.856264</td>\n",
|
| 1273 |
+
" <td>0.886738</td>\n",
|
| 1274 |
+
" <td>0.857339</td>\n",
|
| 1275 |
+
" </tr>\n",
|
| 1276 |
+
" <tr>\n",
|
| 1277 |
+
" <th>fine_tuned</th>\n",
|
| 1278 |
+
" <td>-1</td>\n",
|
| 1279 |
+
" <td>-1</td>\n",
|
| 1280 |
+
" <td>0.790</td>\n",
|
| 1281 |
+
" <td>0.900</td>\n",
|
| 1282 |
+
" <td>0.970</td>\n",
|
| 1283 |
+
" <td>0.98</td>\n",
|
| 1284 |
+
" <td>0.790</td>\n",
|
| 1285 |
+
" <td>0.790</td>\n",
|
| 1286 |
+
" <td>0.300000</td>\n",
|
| 1287 |
+
" <td>0.900</td>\n",
|
| 1288 |
+
" <td>...</td>\n",
|
| 1289 |
+
" <td>0.790</td>\n",
|
| 1290 |
+
" <td>0.300000</td>\n",
|
| 1291 |
+
" <td>0.900</td>\n",
|
| 1292 |
+
" <td>0.194</td>\n",
|
| 1293 |
+
" <td>0.970</td>\n",
|
| 1294 |
+
" <td>0.098</td>\n",
|
| 1295 |
+
" <td>0.98</td>\n",
|
| 1296 |
+
" <td>0.856264</td>\n",
|
| 1297 |
+
" <td>0.886738</td>\n",
|
| 1298 |
+
" <td>0.857339</td>\n",
|
| 1299 |
+
" </tr>\n",
|
| 1300 |
+
" <tr>\n",
|
| 1301 |
+
" <th>fine_tuned</th>\n",
|
| 1302 |
+
" <td>-1</td>\n",
|
| 1303 |
+
" <td>-1</td>\n",
|
| 1304 |
+
" <td>0.770</td>\n",
|
| 1305 |
+
" <td>0.910</td>\n",
|
| 1306 |
+
" <td>0.965</td>\n",
|
| 1307 |
+
" <td>0.98</td>\n",
|
| 1308 |
+
" <td>0.770</td>\n",
|
| 1309 |
+
" <td>0.770</td>\n",
|
| 1310 |
+
" <td>0.303333</td>\n",
|
| 1311 |
+
" <td>0.910</td>\n",
|
| 1312 |
+
" <td>...</td>\n",
|
| 1313 |
+
" <td>0.770</td>\n",
|
| 1314 |
+
" <td>0.303333</td>\n",
|
| 1315 |
+
" <td>0.910</td>\n",
|
| 1316 |
+
" <td>0.193</td>\n",
|
| 1317 |
+
" <td>0.965</td>\n",
|
| 1318 |
+
" <td>0.098</td>\n",
|
| 1319 |
+
" <td>0.98</td>\n",
|
| 1320 |
+
" <td>0.847542</td>\n",
|
| 1321 |
+
" <td>0.880388</td>\n",
|
| 1322 |
+
" <td>0.848711</td>\n",
|
| 1323 |
+
" </tr>\n",
|
| 1324 |
+
" <tr>\n",
|
| 1325 |
+
" <th>fine_tuned</th>\n",
|
| 1326 |
+
" <td>-1</td>\n",
|
| 1327 |
+
" <td>-1</td>\n",
|
| 1328 |
+
" <td>0.815</td>\n",
|
| 1329 |
+
" <td>0.945</td>\n",
|
| 1330 |
+
" <td>0.970</td>\n",
|
| 1331 |
+
" <td>0.99</td>\n",
|
| 1332 |
+
" <td>0.815</td>\n",
|
| 1333 |
+
" <td>0.815</td>\n",
|
| 1334 |
+
" <td>0.315000</td>\n",
|
| 1335 |
+
" <td>0.945</td>\n",
|
| 1336 |
+
" <td>...</td>\n",
|
| 1337 |
+
" <td>0.815</td>\n",
|
| 1338 |
+
" <td>0.315000</td>\n",
|
| 1339 |
+
" <td>0.945</td>\n",
|
| 1340 |
+
" <td>0.194</td>\n",
|
| 1341 |
+
" <td>0.970</td>\n",
|
| 1342 |
+
" <td>0.099</td>\n",
|
| 1343 |
+
" <td>0.99</td>\n",
|
| 1344 |
+
" <td>0.882935</td>\n",
|
| 1345 |
+
" <td>0.909563</td>\n",
|
| 1346 |
+
" <td>0.883519</td>\n",
|
| 1347 |
+
" </tr>\n",
|
| 1348 |
+
" </tbody>\n",
|
| 1349 |
+
"</table>\n",
|
| 1350 |
+
"<p>7 rows Γ 32 columns</p>\n",
|
| 1351 |
+
"</div>"
|
| 1352 |
+
],
|
| 1353 |
+
"text/plain": [
|
| 1354 |
+
" epoch steps cos_sim-Accuracy@1 cos_sim-Accuracy@3 \\\n",
|
| 1355 |
+
"model \n",
|
| 1356 |
+
"bge -1 -1 0.705 0.865 \n",
|
| 1357 |
+
"bge -1 -1 0.705 0.865 \n",
|
| 1358 |
+
"bge -1 -1 0.705 0.865 \n",
|
| 1359 |
+
"fine_tuned -1 -1 0.790 0.900 \n",
|
| 1360 |
+
"fine_tuned -1 -1 0.790 0.900 \n",
|
| 1361 |
+
"fine_tuned -1 -1 0.770 0.910 \n",
|
| 1362 |
+
"fine_tuned -1 -1 0.815 0.945 \n",
|
| 1363 |
+
"\n",
|
| 1364 |
+
" cos_sim-Accuracy@5 cos_sim-Accuracy@10 cos_sim-Precision@1 \\\n",
|
| 1365 |
+
"model \n",
|
| 1366 |
+
"bge 0.920 0.96 0.705 \n",
|
| 1367 |
+
"bge 0.920 0.96 0.705 \n",
|
| 1368 |
+
"bge 0.920 0.96 0.705 \n",
|
| 1369 |
+
"fine_tuned 0.970 0.98 0.790 \n",
|
| 1370 |
+
"fine_tuned 0.970 0.98 0.790 \n",
|
| 1371 |
+
"fine_tuned 0.965 0.98 0.770 \n",
|
| 1372 |
+
"fine_tuned 0.970 0.99 0.815 \n",
|
| 1373 |
+
"\n",
|
| 1374 |
+
" cos_sim-Recall@1 cos_sim-Precision@3 cos_sim-Recall@3 ... \\\n",
|
| 1375 |
+
"model ... \n",
|
| 1376 |
+
"bge 0.705 0.288333 0.865 ... \n",
|
| 1377 |
+
"bge 0.705 0.288333 0.865 ... \n",
|
| 1378 |
+
"bge 0.705 0.288333 0.865 ... \n",
|
| 1379 |
+
"fine_tuned 0.790 0.300000 0.900 ... \n",
|
| 1380 |
+
"fine_tuned 0.790 0.300000 0.900 ... \n",
|
| 1381 |
+
"fine_tuned 0.770 0.303333 0.910 ... \n",
|
| 1382 |
+
"fine_tuned 0.815 0.315000 0.945 ... \n",
|
| 1383 |
+
"\n",
|
| 1384 |
+
" dot_score-Recall@1 dot_score-Precision@3 dot_score-Recall@3 \\\n",
|
| 1385 |
+
"model \n",
|
| 1386 |
+
"bge 0.705 0.288333 0.865 \n",
|
| 1387 |
+
"bge 0.705 0.288333 0.865 \n",
|
| 1388 |
+
"bge 0.705 0.288333 0.865 \n",
|
| 1389 |
+
"fine_tuned 0.790 0.300000 0.900 \n",
|
| 1390 |
+
"fine_tuned 0.790 0.300000 0.900 \n",
|
| 1391 |
+
"fine_tuned 0.770 0.303333 0.910 \n",
|
| 1392 |
+
"fine_tuned 0.815 0.315000 0.945 \n",
|
| 1393 |
+
"\n",
|
| 1394 |
+
" dot_score-Precision@5 dot_score-Recall@5 dot_score-Precision@10 \\\n",
|
| 1395 |
+
"model \n",
|
| 1396 |
+
"bge 0.184 0.920 0.096 \n",
|
| 1397 |
+
"bge 0.184 0.920 0.096 \n",
|
| 1398 |
+
"bge 0.184 0.920 0.096 \n",
|
| 1399 |
+
"fine_tuned 0.194 0.970 0.098 \n",
|
| 1400 |
+
"fine_tuned 0.194 0.970 0.098 \n",
|
| 1401 |
+
"fine_tuned 0.193 0.965 0.098 \n",
|
| 1402 |
+
"fine_tuned 0.194 0.970 0.099 \n",
|
| 1403 |
+
"\n",
|
| 1404 |
+
" dot_score-Recall@10 dot_score-MRR@10 dot_score-NDCG@10 \\\n",
|
| 1405 |
+
"model \n",
|
| 1406 |
+
"bge 0.96 0.792935 0.833595 \n",
|
| 1407 |
+
"bge 0.96 0.792935 0.833595 \n",
|
| 1408 |
+
"bge 0.96 0.792935 0.833595 \n",
|
| 1409 |
+
"fine_tuned 0.98 0.856264 0.886738 \n",
|
| 1410 |
+
"fine_tuned 0.98 0.856264 0.886738 \n",
|
| 1411 |
+
"fine_tuned 0.98 0.847542 0.880388 \n",
|
| 1412 |
+
"fine_tuned 0.99 0.882935 0.909563 \n",
|
| 1413 |
+
"\n",
|
| 1414 |
+
" dot_score-MAP@100 \n",
|
| 1415 |
+
"model \n",
|
| 1416 |
+
"bge 0.795570 \n",
|
| 1417 |
+
"bge 0.795570 \n",
|
| 1418 |
+
"bge 0.795570 \n",
|
| 1419 |
+
"fine_tuned 0.857339 \n",
|
| 1420 |
+
"fine_tuned 0.857339 \n",
|
| 1421 |
+
"fine_tuned 0.848711 \n",
|
| 1422 |
+
"fine_tuned 0.883519 \n",
|
| 1423 |
+
"\n",
|
| 1424 |
+
"[7 rows x 32 columns]"
|
| 1425 |
+
]
|
| 1426 |
+
},
|
| 1427 |
+
"execution_count": 36,
|
| 1428 |
+
"metadata": {},
|
| 1429 |
+
"output_type": "execute_result"
|
| 1430 |
+
}
|
| 1431 |
+
],
|
| 1432 |
+
"source": [
|
| 1433 |
+
"df_st_bge[\"model\"] = \"bge\"\n",
|
| 1434 |
+
"df_st_finetuned[\"model\"] = \"fine_tuned\"\n",
|
| 1435 |
+
"df_st_all = pd.concat([df_st_bge, df_st_finetuned])\n",
|
| 1436 |
+
"df_st_all = df_st_all.set_index(\"model\")\n",
|
| 1437 |
+
"df_st_all"
|
| 1438 |
+
]
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"cell_type": "code",
|
| 1442 |
+
"execution_count": null,
|
| 1443 |
+
"id": "6ed2321b-6618-4a2b-9b1c-028425e91b84",
|
| 1444 |
+
"metadata": {},
|
| 1445 |
+
"outputs": [],
|
| 1446 |
+
"source": []
|
| 1447 |
+
}
|
| 1448 |
+
],
|
| 1449 |
+
"metadata": {
|
| 1450 |
+
"kernelspec": {
|
| 1451 |
+
"display_name": "Python 3 (ipykernel)",
|
| 1452 |
+
"language": "python",
|
| 1453 |
+
"name": "python3"
|
| 1454 |
+
},
|
| 1455 |
+
"language_info": {
|
| 1456 |
+
"codemirror_mode": {
|
| 1457 |
+
"name": "ipython",
|
| 1458 |
+
"version": 3
|
| 1459 |
+
},
|
| 1460 |
+
"file_extension": ".py",
|
| 1461 |
+
"mimetype": "text/x-python",
|
| 1462 |
+
"name": "python",
|
| 1463 |
+
"nbconvert_exporter": "python",
|
| 1464 |
+
"pygments_lexer": "ipython3",
|
| 1465 |
+
"version": "3.9.18"
|
| 1466 |
+
}
|
| 1467 |
+
},
|
| 1468 |
+
"nbformat": 4,
|
| 1469 |
+
"nbformat_minor": 5
|
| 1470 |
+
}
|
notebooks/002_persisted-embedding-model-advanced.ipynb
ADDED
|
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "8acae3ed-2953-45a3-aba9-0327b6ae3679",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"### ChromaDB method - create vectorstore based on Chroma"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "7de9c591-5a77-4bbe-80f1-4897e15f0b97",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"import chromadb\n",
|
| 19 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
| 20 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
| 21 |
+
"from llama_index.core import StorageContext\n",
|
| 22 |
+
"from llama_index.core import ServiceContext\n",
|
| 23 |
+
"from llama_index.core import Document\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
| 26 |
+
"from llama_index.core import Settings\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"import nest_asyncio\n",
|
| 29 |
+
"nest_asyncio.apply()\n",
|
| 30 |
+
"\n",
|
| 31 |
+
"import time"
|
| 32 |
+
]
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "code",
|
| 36 |
+
"execution_count": null,
|
| 37 |
+
"id": "3e65dff6-77b6-4be8-8857-5cecf3a035bb",
|
| 38 |
+
"metadata": {},
|
| 39 |
+
"outputs": [],
|
| 40 |
+
"source": [
|
| 41 |
+
"# load some documents\n",
|
| 42 |
+
"documents = SimpleDirectoryReader(input_files=[\n",
|
| 43 |
+
" \"../raw_documents/qna.txt\",\n",
|
| 44 |
+
" \"../raw_documents/HI Chapter Summary Version 1.3.pdf\",\n",
|
| 45 |
+
" \"../raw_documents/conversation_examples.txt\",\n",
|
| 46 |
+
" \"../raw_documents/HI_Knowledge_Base.pdf\",\n",
|
| 47 |
+
" \"../raw_documents/answers.txt\",\n",
|
| 48 |
+
" ]).load_data()\n",
|
| 49 |
+
"document = Document(text=\"\\n\\n\".join([doc.text for doc in documents]))"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"id": "bd86b3f5-1dfc-4257-bd9c-86d34f02398d",
|
| 56 |
+
"metadata": {},
|
| 57 |
+
"outputs": [],
|
| 58 |
+
"source": [
|
| 59 |
+
"# initialize client, setting path to save data\n",
|
| 60 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db_advanced\")"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": null,
|
| 66 |
+
"id": "f568ce7b-bcbf-455c-acf1-6c2cae129fed",
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"# create collection\n",
|
| 71 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": null,
|
| 77 |
+
"id": "ed0b018e-1982-46b2-b1b4-04f5c0ce8672",
|
| 78 |
+
"metadata": {},
|
| 79 |
+
"outputs": [],
|
| 80 |
+
"source": [
|
| 81 |
+
"# assign chroma as the vector_store to the context\n",
|
| 82 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": null,
|
| 88 |
+
"id": "eb5edab2-30db-4bf7-96b5-4005d3161988",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": []
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"id": "0946b6ce-96ab-44de-ad75-e424a8429f67",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"Settings.llm = None\n",
|
| 101 |
+
"Settings.chunk_size = 1024\n",
|
| 102 |
+
"Settings.embed_model = \"local:../models/fine-tuned-embeddings-advanced\""
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": null,
|
| 108 |
+
"id": "b8c73a2c-1129-406a-8046-085afcaf9cbb",
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"nodes = Settings.node_parser.get_nodes_from_documents(documents)"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"id": "75f1c76f-d3e5-4b69-818c-98865adb1457",
|
| 119 |
+
"metadata": {},
|
| 120 |
+
"outputs": [],
|
| 121 |
+
"source": [
|
| 122 |
+
"len(nodes)"
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"id": "adfe688f-95c0-477c-a9de-e9e77541a1d7",
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"outputs": [],
|
| 131 |
+
"source": []
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"execution_count": null,
|
| 136 |
+
"id": "dab4c6f3-ef67-4d90-b3d5-e290c5d1b6f4",
|
| 137 |
+
"metadata": {},
|
| 138 |
+
"outputs": [],
|
| 139 |
+
"source": [
|
| 140 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": null,
|
| 146 |
+
"id": "6a764113-ad7e-4674-aa57-ebbf405902a8",
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"outputs": [],
|
| 149 |
+
"source": [
|
| 150 |
+
"storage_context.docstore.add_documents(nodes)"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "code",
|
| 155 |
+
"execution_count": null,
|
| 156 |
+
"id": "38e7c88d-6c45-4275-8293-d09b4b85a7cf",
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"outputs": [],
|
| 159 |
+
"source": []
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": null,
|
| 164 |
+
"id": "e492ed4a-23a3-47d6-8b50-51fb48b3aa05",
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"outputs": [],
|
| 167 |
+
"source": [
|
| 168 |
+
"start_time = time.time()"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"execution_count": null,
|
| 174 |
+
"id": "cbd11b89-9b83-4f08-bb30-160f750f2ffb",
|
| 175 |
+
"metadata": {},
|
| 176 |
+
"outputs": [],
|
| 177 |
+
"source": [
|
| 178 |
+
"vector_index = VectorStoreIndex(nodes, storage_context=storage_context)"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": null,
|
| 184 |
+
"id": "082a0d7e-b025-4db1-be2a-7a0b7bc453b9",
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"outputs": [],
|
| 187 |
+
"source": [
|
| 188 |
+
"vector_query_engine = vector_index.as_query_engine()"
|
| 189 |
+
]
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"cell_type": "code",
|
| 193 |
+
"execution_count": null,
|
| 194 |
+
"id": "d3bd848d-9985-4a3d-bdc4-ec340cc69ef3",
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"outputs": [],
|
| 197 |
+
"source": [
|
| 198 |
+
"indexing_cost = time.time() - start_time\n",
|
| 199 |
+
"indexing_cost = indexing_cost / 60\n",
|
| 200 |
+
"print(f\"Indexing time: {indexing_cost:.1f} mins\")"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"cell_type": "code",
|
| 205 |
+
"execution_count": null,
|
| 206 |
+
"id": "3290e870-41d7-49c4-9c4f-cb16bd1f469e",
|
| 207 |
+
"metadata": {
|
| 208 |
+
"scrolled": true
|
| 209 |
+
},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"response = vector_query_engine.query(\"Healthcare System in Singapore consists of?\")\n",
|
| 213 |
+
"response"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": null,
|
| 219 |
+
"id": "131d907a-0677-4ad8-b3f7-6fc9b9c5d0a5",
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": []
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": null,
|
| 227 |
+
"id": "08fb2be5-3a44-4bb8-a9fc-61d7f03b7a35",
|
| 228 |
+
"metadata": {},
|
| 229 |
+
"outputs": [],
|
| 230 |
+
"source": []
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "markdown",
|
| 234 |
+
"id": "a7fc01f6-4738-415b-a96b-afd6cf8d789a",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"source": [
|
| 237 |
+
"### ChromaDB method - load vectorstore based on Chroma"
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "code",
|
| 242 |
+
"execution_count": null,
|
| 243 |
+
"id": "c1a42c35-5f57-423c-8fb7-7d18b3b466b5",
|
| 244 |
+
"metadata": {},
|
| 245 |
+
"outputs": [],
|
| 246 |
+
"source": [
|
| 247 |
+
"import chromadb\n",
|
| 248 |
+
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
|
| 249 |
+
"from llama_index.vector_stores.chroma.base import ChromaVectorStore\n",
|
| 250 |
+
"from llama_index.core import StorageContext\n",
|
| 251 |
+
"from llama_index.core import ServiceContext\n",
|
| 252 |
+
"from llama_index.core import Document\n",
|
| 253 |
+
"from llama_index.core import Settings\n",
|
| 254 |
+
"\n",
|
| 255 |
+
"from llama_index.embeddings.huggingface.base import HuggingFaceEmbedding\n",
|
| 256 |
+
"from llama_index.llms.openai import OpenAI\n",
|
| 257 |
+
"from llama_index.core.memory import ChatMemoryBuffer\n",
|
| 258 |
+
"\n",
|
| 259 |
+
"import time"
|
| 260 |
+
]
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"cell_type": "code",
|
| 264 |
+
"execution_count": null,
|
| 265 |
+
"id": "72dd0ece-c72d-428a-89b4-9494d948c845",
|
| 266 |
+
"metadata": {},
|
| 267 |
+
"outputs": [],
|
| 268 |
+
"source": []
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"id": "d38dc953-b923-4128-86a1-c8c6f69af0ed",
|
| 274 |
+
"metadata": {},
|
| 275 |
+
"outputs": [],
|
| 276 |
+
"source": [
|
| 277 |
+
"fine_tuned_path = \"local:../models/fine-tuned-embeddings-advanced\""
|
| 278 |
+
]
|
| 279 |
+
},
|
| 280 |
+
{
|
| 281 |
+
"cell_type": "code",
|
| 282 |
+
"execution_count": null,
|
| 283 |
+
"id": "4c83c613-2cfc-4871-9d07-c82f77a3bd5e",
|
| 284 |
+
"metadata": {},
|
| 285 |
+
"outputs": [],
|
| 286 |
+
"source": [
|
| 287 |
+
"llm = OpenAI(model=\"gpt-4-0125-preview\", temperature=0.0)"
|
| 288 |
+
]
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"cell_type": "code",
|
| 292 |
+
"execution_count": null,
|
| 293 |
+
"id": "0583e9b0-d977-488c-8331-46dfa749924c",
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [],
|
| 296 |
+
"source": [
|
| 297 |
+
"Settings.llm = llm\n",
|
| 298 |
+
"Settings.embed_model = fine_tuned_path"
|
| 299 |
+
]
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"cell_type": "code",
|
| 303 |
+
"execution_count": null,
|
| 304 |
+
"id": "f994f440-f647-48b4-a517-46a79f7561e5",
|
| 305 |
+
"metadata": {},
|
| 306 |
+
"outputs": [],
|
| 307 |
+
"source": []
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"cell_type": "code",
|
| 311 |
+
"execution_count": null,
|
| 312 |
+
"id": "2159a2b6-494b-41b9-ac54-dd342bfb74ba",
|
| 313 |
+
"metadata": {},
|
| 314 |
+
"outputs": [],
|
| 315 |
+
"source": [
|
| 316 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db_advanced\")"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"id": "1b385644-b46e-4d13-88fa-9f4af39db405",
|
| 323 |
+
"metadata": {},
|
| 324 |
+
"outputs": [],
|
| 325 |
+
"source": [
|
| 326 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"cell_type": "code",
|
| 331 |
+
"execution_count": null,
|
| 332 |
+
"id": "93cb53d1-6b8c-4b2d-a839-53501c0d54b2",
|
| 333 |
+
"metadata": {},
|
| 334 |
+
"outputs": [],
|
| 335 |
+
"source": [
|
| 336 |
+
"# assign chroma as the vector_store to the context\n",
|
| 337 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
| 338 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
| 339 |
+
]
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"cell_type": "code",
|
| 343 |
+
"execution_count": null,
|
| 344 |
+
"id": "c40d59e1-6d42-41f0-8c9b-70aa026093ae",
|
| 345 |
+
"metadata": {},
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"source": [
|
| 348 |
+
"# create your index\n",
|
| 349 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
| 350 |
+
" vector_store=vector_store,\n",
|
| 351 |
+
" storage_context=storage_context\n",
|
| 352 |
+
")"
|
| 353 |
+
]
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"cell_type": "code",
|
| 357 |
+
"execution_count": null,
|
| 358 |
+
"id": "73ba6d06-ba69-4b5e-962a-9cf7d2dc4d94",
|
| 359 |
+
"metadata": {},
|
| 360 |
+
"outputs": [],
|
| 361 |
+
"source": []
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"cell_type": "code",
|
| 365 |
+
"execution_count": null,
|
| 366 |
+
"id": "1a506940-c2b4-4d14-ad93-fd451331c582",
|
| 367 |
+
"metadata": {},
|
| 368 |
+
"outputs": [],
|
| 369 |
+
"source": [
|
| 370 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
| 371 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
| 372 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
| 373 |
+
")"
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"cell_type": "code",
|
| 378 |
+
"execution_count": null,
|
| 379 |
+
"id": "3f592848-8536-4b4d-b34a-adc32d043432",
|
| 380 |
+
"metadata": {},
|
| 381 |
+
"outputs": [],
|
| 382 |
+
"source": [
|
| 383 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=100_000)"
|
| 384 |
+
]
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"cell_type": "code",
|
| 388 |
+
"execution_count": null,
|
| 389 |
+
"id": "6c7df81a-fd2f-42bf-b09c-46d7750f7252",
|
| 390 |
+
"metadata": {},
|
| 391 |
+
"outputs": [],
|
| 392 |
+
"source": [
|
| 393 |
+
"chat_engine = index.as_chat_engine(\n",
|
| 394 |
+
" chat_mode=\"context\",\n",
|
| 395 |
+
" memory=memory,\n",
|
| 396 |
+
" system_prompt=system_content\n",
|
| 397 |
+
")"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": null,
|
| 403 |
+
"id": "434f0caf-8b1f-40c6-b9ec-b039cd1ca612",
|
| 404 |
+
"metadata": {},
|
| 405 |
+
"outputs": [],
|
| 406 |
+
"source": [
|
| 407 |
+
"prompt = \"\"\"\n",
|
| 408 |
+
"Question: Which of the following is NOT a characteristic of medical expense insurance?\n",
|
| 409 |
+
"A. Pro ration factor and co-insurance.\n",
|
| 410 |
+
"B. Deductibles apply for all treatments.\n",
|
| 411 |
+
"C. Impose Sub- Limits.\n",
|
| 412 |
+
"D. Can be issued as a rider or stand-alone.\n",
|
| 413 |
+
"\"\"\""
|
| 414 |
+
]
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"cell_type": "code",
|
| 418 |
+
"execution_count": null,
|
| 419 |
+
"id": "78abaf95-e52d-445c-9d8e-bc51efb20f06",
|
| 420 |
+
"metadata": {},
|
| 421 |
+
"outputs": [],
|
| 422 |
+
"source": [
|
| 423 |
+
"res = chat_engine.chat(prompt)\n",
|
| 424 |
+
"print(res.response)"
|
| 425 |
+
]
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"cell_type": "code",
|
| 429 |
+
"execution_count": null,
|
| 430 |
+
"id": "1e62303c-3a00-448f-ad93-15cb6cee1f24",
|
| 431 |
+
"metadata": {},
|
| 432 |
+
"outputs": [],
|
| 433 |
+
"source": []
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"cell_type": "code",
|
| 437 |
+
"execution_count": null,
|
| 438 |
+
"id": "dad72f9f-7f86-407d-93be-f5724cb30d5c",
|
| 439 |
+
"metadata": {},
|
| 440 |
+
"outputs": [],
|
| 441 |
+
"source": [
|
| 442 |
+
"hi_engine = index.as_query_engine(\n",
|
| 443 |
+
" memory=memory,\n",
|
| 444 |
+
" system_prompt=system_content,\n",
|
| 445 |
+
" similarity_top_k=3,\n",
|
| 446 |
+
" streaming=True\n",
|
| 447 |
+
")"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"cell_type": "code",
|
| 452 |
+
"execution_count": null,
|
| 453 |
+
"id": "ab778a5d-d438-4f39-88f5-c67a1f1d575e",
|
| 454 |
+
"metadata": {},
|
| 455 |
+
"outputs": [],
|
| 456 |
+
"source": []
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"cell_type": "code",
|
| 460 |
+
"execution_count": null,
|
| 461 |
+
"id": "7bb7c21a-7461-40c1-87a7-4a1f92f70153",
|
| 462 |
+
"metadata": {},
|
| 463 |
+
"outputs": [],
|
| 464 |
+
"source": [
|
| 465 |
+
"res = hi_engine.query(\"may I know what is the rationale?\")\n",
|
| 466 |
+
"print(res)"
|
| 467 |
+
]
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"cell_type": "code",
|
| 471 |
+
"execution_count": null,
|
| 472 |
+
"id": "874a39ce-e682-42fa-8085-646bacea6cdb",
|
| 473 |
+
"metadata": {},
|
| 474 |
+
"outputs": [],
|
| 475 |
+
"source": []
|
| 476 |
+
},
|
| 477 |
+
{
|
| 478 |
+
"cell_type": "code",
|
| 479 |
+
"execution_count": null,
|
| 480 |
+
"id": "301e8270-783d-4942-a05f-9683ca96fbda",
|
| 481 |
+
"metadata": {},
|
| 482 |
+
"outputs": [],
|
| 483 |
+
"source": []
|
| 484 |
+
}
|
| 485 |
+
],
|
| 486 |
+
"metadata": {
|
| 487 |
+
"kernelspec": {
|
| 488 |
+
"display_name": "Python 3 (ipykernel)",
|
| 489 |
+
"language": "python",
|
| 490 |
+
"name": "python3"
|
| 491 |
+
},
|
| 492 |
+
"language_info": {
|
| 493 |
+
"codemirror_mode": {
|
| 494 |
+
"name": "ipython",
|
| 495 |
+
"version": 3
|
| 496 |
+
},
|
| 497 |
+
"file_extension": ".py",
|
| 498 |
+
"mimetype": "text/x-python",
|
| 499 |
+
"name": "python",
|
| 500 |
+
"nbconvert_exporter": "python",
|
| 501 |
+
"pygments_lexer": "ipython3",
|
| 502 |
+
"version": "3.9.18"
|
| 503 |
+
}
|
| 504 |
+
},
|
| 505 |
+
"nbformat": 4,
|
| 506 |
+
"nbformat_minor": 5
|
| 507 |
+
}
|
notebooks/002_persisted-embedding-model.ipynb
CHANGED
|
@@ -271,7 +271,7 @@
|
|
| 271 |
"metadata": {},
|
| 272 |
"outputs": [],
|
| 273 |
"source": [
|
| 274 |
-
"llm = OpenAI(model=\"gpt-
|
| 275 |
]
|
| 276 |
},
|
| 277 |
{
|
|
@@ -391,7 +391,23 @@
|
|
| 391 |
"metadata": {},
|
| 392 |
"outputs": [],
|
| 393 |
"source": [
|
| 394 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
"print(res.response)"
|
| 396 |
]
|
| 397 |
},
|
|
@@ -413,7 +429,7 @@
|
|
| 413 |
"hi_engine = index.as_query_engine(\n",
|
| 414 |
" memory=memory,\n",
|
| 415 |
" system_prompt=system_content,\n",
|
| 416 |
-
" similarity_top_k=
|
| 417 |
" streaming=True\n",
|
| 418 |
")"
|
| 419 |
]
|
|
@@ -433,7 +449,7 @@
|
|
| 433 |
"metadata": {},
|
| 434 |
"outputs": [],
|
| 435 |
"source": [
|
| 436 |
-
"res = hi_engine.query(
|
| 437 |
"print(res)"
|
| 438 |
]
|
| 439 |
},
|
|
|
|
| 271 |
"metadata": {},
|
| 272 |
"outputs": [],
|
| 273 |
"source": [
|
| 274 |
+
"llm = OpenAI(model=\"gpt-4-0125-preview\", temperature=0.0)"
|
| 275 |
]
|
| 276 |
},
|
| 277 |
{
|
|
|
|
| 391 |
"metadata": {},
|
| 392 |
"outputs": [],
|
| 393 |
"source": [
|
| 394 |
+
"prompt = \"\"\"\n",
|
| 395 |
+
"Question: Which of the following is NOT a characteristic of medical expense insurance?\n",
|
| 396 |
+
"A. Pro ration factor and co-insurance.\n",
|
| 397 |
+
"B. Deductibles apply for all treatments.\n",
|
| 398 |
+
"C. Impose Sub- Limits.\n",
|
| 399 |
+
"D. Can be issued as a rider or stand-alone.\n",
|
| 400 |
+
"\"\"\""
|
| 401 |
+
]
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"cell_type": "code",
|
| 405 |
+
"execution_count": null,
|
| 406 |
+
"id": "9563515b-8a95-4dc8-a312-f57f9b59da86",
|
| 407 |
+
"metadata": {},
|
| 408 |
+
"outputs": [],
|
| 409 |
+
"source": [
|
| 410 |
+
"res = chat_engine.chat(prompt)\n",
|
| 411 |
"print(res.response)"
|
| 412 |
]
|
| 413 |
},
|
|
|
|
| 429 |
"hi_engine = index.as_query_engine(\n",
|
| 430 |
" memory=memory,\n",
|
| 431 |
" system_prompt=system_content,\n",
|
| 432 |
+
" similarity_top_k=10,\n",
|
| 433 |
" streaming=True\n",
|
| 434 |
")"
|
| 435 |
]
|
|
|
|
| 449 |
"metadata": {},
|
| 450 |
"outputs": [],
|
| 451 |
"source": [
|
| 452 |
+
"res = hi_engine.query(prompt)\n",
|
| 453 |
"print(res)"
|
| 454 |
]
|
| 455 |
},
|
raw_documents/answers.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7d01aaa6a0000c46cf93b1572ad15464480260dbc8fa8dc718f4718a3ba7598
|
| 3 |
+
size 41317
|
raw_documents/conversation_examples.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd354c1b6691627a6598f124f76ef43d29a1c7108124d8d833180b8efbd207a4
|
| 3 |
+
size 47902
|
raw_documents/qna.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62f7746092d2d52d8028fb13471427e220aae0ab411771eda56883e9bfdc75ce
|
| 3 |
+
size 75976
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
aiohttp==3.9.1
|
| 2 |
aiosignal==1.3.1
|
| 3 |
alembic==1.13.1
|
|
@@ -28,6 +29,7 @@ charset-normalizer==3.3.2
|
|
| 28 |
chroma-hnswlib==0.7.3
|
| 29 |
chromadb==0.4.22
|
| 30 |
click==8.1.7
|
|
|
|
| 31 |
coloredlogs==15.0.1
|
| 32 |
comm==0.2.0
|
| 33 |
contourpy==1.2.0
|
|
@@ -45,6 +47,7 @@ exceptiongroup==1.2.0
|
|
| 45 |
executing==2.0.1
|
| 46 |
Faker==22.0.0
|
| 47 |
fastapi==0.109.0
|
|
|
|
| 48 |
fastjsonschema==2.19.1
|
| 49 |
favicon==0.7.0
|
| 50 |
filelock==3.13.1
|
|
@@ -58,6 +61,7 @@ gitdb==4.0.11
|
|
| 58 |
GitPython==3.1.40
|
| 59 |
google-auth==2.27.0
|
| 60 |
googleapis-common-protos==1.62.0
|
|
|
|
| 61 |
greenlet==3.0.3
|
| 62 |
grpcio==1.60.0
|
| 63 |
h11==0.14.0
|
|
@@ -101,19 +105,28 @@ langchain==0.0.354
|
|
| 101 |
langchain-community==0.0.8
|
| 102 |
langchain-core==0.1.23
|
| 103 |
langsmith==0.0.87
|
| 104 |
-
llama-index==0.10.
|
| 105 |
-
llama-index-agent-openai==0.1.
|
| 106 |
-
llama-index-
|
|
|
|
|
|
|
| 107 |
llama-index-embeddings-huggingface==0.1.1
|
| 108 |
-
llama-index-embeddings-openai==0.1.
|
|
|
|
|
|
|
| 109 |
llama-index-legacy==0.9.48
|
| 110 |
-
llama-index-llms-
|
| 111 |
-
llama-index-
|
|
|
|
| 112 |
llama-index-packs-auto-merging-retriever==0.1.2
|
| 113 |
-
llama-index-
|
| 114 |
-
llama-index-
|
| 115 |
-
llama-index-
|
|
|
|
|
|
|
| 116 |
llama-index-vector-stores-chroma==0.1.1
|
|
|
|
|
|
|
| 117 |
lxml==5.1.0
|
| 118 |
Mako==1.3.0
|
| 119 |
Markdown==3.5.1
|
|
@@ -176,7 +189,7 @@ pyarrow==14.0.2
|
|
| 176 |
pyasn1==0.5.1
|
| 177 |
pyasn1-modules==0.3.0
|
| 178 |
pycparser==2.21
|
| 179 |
-
pydantic==
|
| 180 |
pydantic_core==2.14.6
|
| 181 |
pydeck==0.8.1b0
|
| 182 |
Pygments==2.17.2
|
|
@@ -268,4 +281,4 @@ websockets==12.0
|
|
| 268 |
widgetsnbextension==4.0.9
|
| 269 |
wrapt==1.16.0
|
| 270 |
yarl==1.9.4
|
| 271 |
-
zipp==3.17.0
|
|
|
|
| 1 |
+
aenum==3.1.15
|
| 2 |
aiohttp==3.9.1
|
| 3 |
aiosignal==1.3.1
|
| 4 |
alembic==1.13.1
|
|
|
|
| 29 |
chroma-hnswlib==0.7.3
|
| 30 |
chromadb==0.4.22
|
| 31 |
click==8.1.7
|
| 32 |
+
cohere==4.49
|
| 33 |
coloredlogs==15.0.1
|
| 34 |
comm==0.2.0
|
| 35 |
contourpy==1.2.0
|
|
|
|
| 47 |
executing==2.0.1
|
| 48 |
Faker==22.0.0
|
| 49 |
fastapi==0.109.0
|
| 50 |
+
fastavro==1.9.1
|
| 51 |
fastjsonschema==2.19.1
|
| 52 |
favicon==0.7.0
|
| 53 |
filelock==3.13.1
|
|
|
|
| 61 |
GitPython==3.1.40
|
| 62 |
google-auth==2.27.0
|
| 63 |
googleapis-common-protos==1.62.0
|
| 64 |
+
gradientai==1.7.0
|
| 65 |
greenlet==3.0.3
|
| 66 |
grpcio==1.60.0
|
| 67 |
h11==0.14.0
|
|
|
|
| 105 |
langchain-community==0.0.8
|
| 106 |
langchain-core==0.1.23
|
| 107 |
langsmith==0.0.87
|
| 108 |
+
llama-index==0.10.12
|
| 109 |
+
llama-index-agent-openai==0.1.5
|
| 110 |
+
llama-index-cli==0.1.5
|
| 111 |
+
llama-index-core==0.10.12
|
| 112 |
+
llama-index-embeddings-adapter==0.1.3
|
| 113 |
llama-index-embeddings-huggingface==0.1.1
|
| 114 |
+
llama-index-embeddings-openai==0.1.6
|
| 115 |
+
llama-index-finetuning==0.1.4
|
| 116 |
+
llama-index-indices-managed-llama-cloud==0.1.3
|
| 117 |
llama-index-legacy==0.9.48
|
| 118 |
+
llama-index-llms-gradient==0.1.2
|
| 119 |
+
llama-index-llms-openai==0.1.6
|
| 120 |
+
llama-index-multi-modal-llms-openai==0.1.4
|
| 121 |
llama-index-packs-auto-merging-retriever==0.1.2
|
| 122 |
+
llama-index-postprocessor-cohere-rerank==0.1.2
|
| 123 |
+
llama-index-program-openai==0.1.4
|
| 124 |
+
llama-index-question-gen-openai==0.1.3
|
| 125 |
+
llama-index-readers-file==0.1.5
|
| 126 |
+
llama-index-readers-llama-parse==0.1.3
|
| 127 |
llama-index-vector-stores-chroma==0.1.1
|
| 128 |
+
llama-parse==0.3.4
|
| 129 |
+
llamaindex-py-client==0.1.13
|
| 130 |
lxml==5.1.0
|
| 131 |
Mako==1.3.0
|
| 132 |
Markdown==3.5.1
|
|
|
|
| 189 |
pyasn1==0.5.1
|
| 190 |
pyasn1-modules==0.3.0
|
| 191 |
pycparser==2.21
|
| 192 |
+
pydantic==1.10.14
|
| 193 |
pydantic_core==2.14.6
|
| 194 |
pydeck==0.8.1b0
|
| 195 |
Pygments==2.17.2
|
|
|
|
| 281 |
widgetsnbextension==4.0.9
|
| 282 |
wrapt==1.16.0
|
| 283 |
yarl==1.9.4
|
| 284 |
+
zipp==3.17.0
|
streamlit_app.py
CHANGED
|
@@ -7,6 +7,7 @@ import base64
|
|
| 7 |
from io import BytesIO
|
| 8 |
import sqlite3
|
| 9 |
import uuid
|
|
|
|
| 10 |
|
| 11 |
import chromadb
|
| 12 |
from llama_index.core import (
|
|
@@ -39,14 +40,14 @@ nest_asyncio.apply()
|
|
| 39 |
st.set_page_config(page_title="π»π Study Bear π―")
|
| 40 |
openai_api = os.getenv("OPENAI_API_KEY")
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
embedding_model = "
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
questionaire_db_path = "
|
| 50 |
|
| 51 |
data_df = pd.DataFrame(
|
| 52 |
{
|
|
@@ -109,6 +110,9 @@ if "init" not in st.session_state.keys():
|
|
| 109 |
st.session_state.init = {"warm_started": "No"}
|
| 110 |
st.session_state.feedback = False
|
| 111 |
|
|
|
|
|
|
|
|
|
|
| 112 |
# Store LLM generated responses
|
| 113 |
if "messages" not in st.session_state.keys():
|
| 114 |
st.session_state.messages = [{"role": "assistant",
|
|
@@ -341,19 +345,19 @@ if prompt := st.chat_input(disabled=not openai_api):
|
|
| 341 |
# Retrieve text prompt from image submission
|
| 342 |
if prompt is None and \
|
| 343 |
st.session_state.messages[-1]["role"] == "admin":
|
| 344 |
-
image_prompt = True
|
| 345 |
prompt = st.session_state.messages[-1]["content"]
|
| 346 |
|
| 347 |
# Generate a new response if last message is not from assistant
|
| 348 |
if st.session_state.messages[-1]["role"] != "assistant":
|
| 349 |
with st.chat_message("assistant", avatar=bear_img_path):
|
| 350 |
with st.spinner("π§Έπ€ Thinking... π»π"):
|
| 351 |
-
if image_prompt:
|
| 352 |
response = generate_llm_response(
|
| 353 |
prompt,
|
| 354 |
tool_choice="health_insurance_textbook_query_engine"
|
| 355 |
)
|
| 356 |
-
image_prompt = False
|
| 357 |
else:
|
| 358 |
response = generate_llm_response(prompt, tool_choice="auto")
|
| 359 |
placeholder = st.empty()
|
|
|
|
| 7 |
from io import BytesIO
|
| 8 |
import sqlite3
|
| 9 |
import uuid
|
| 10 |
+
import yaml
|
| 11 |
|
| 12 |
import chromadb
|
| 13 |
from llama_index.core import (
|
|
|
|
| 40 |
st.set_page_config(page_title="π»π Study Bear π―")
|
| 41 |
openai_api = os.getenv("OPENAI_API_KEY")
|
| 42 |
|
| 43 |
+
with open("./config/model_config.yml", "r") as file_reader:
|
| 44 |
+
model_config = yaml.safe_load(file_reader)
|
| 45 |
+
|
| 46 |
+
input_files = model_config["input_data"]["source"]
|
| 47 |
+
embedding_model = model_config["embeddings"]["embedding_base_model"]
|
| 48 |
+
fine_tuned_path = model_config["embeddings"]["fine_tuned_embedding_model"]
|
| 49 |
+
persisted_vector_db = model_config["vector_store"]["persisted_path"]
|
| 50 |
+
questionaire_db_path = model_config["questionaire_data"]["db_path"]
|
| 51 |
|
| 52 |
data_df = pd.DataFrame(
|
| 53 |
{
|
|
|
|
| 110 |
st.session_state.init = {"warm_started": "No"}
|
| 111 |
st.session_state.feedback = False
|
| 112 |
|
| 113 |
+
if "image_prompt" not in st.session_state.keys():
|
| 114 |
+
st.session_state.image_prompt = False
|
| 115 |
+
|
| 116 |
# Store LLM generated responses
|
| 117 |
if "messages" not in st.session_state.keys():
|
| 118 |
st.session_state.messages = [{"role": "assistant",
|
|
|
|
| 345 |
# Retrieve text prompt from image submission
|
| 346 |
if prompt is None and \
|
| 347 |
st.session_state.messages[-1]["role"] == "admin":
|
| 348 |
+
st.session_state.image_prompt = True
|
| 349 |
prompt = st.session_state.messages[-1]["content"]
|
| 350 |
|
| 351 |
# Generate a new response if last message is not from assistant
|
| 352 |
if st.session_state.messages[-1]["role"] != "assistant":
|
| 353 |
with st.chat_message("assistant", avatar=bear_img_path):
|
| 354 |
with st.spinner("π§Έπ€ Thinking... π»π"):
|
| 355 |
+
if st.session_state.image_prompt:
|
| 356 |
response = generate_llm_response(
|
| 357 |
prompt,
|
| 358 |
tool_choice="health_insurance_textbook_query_engine"
|
| 359 |
)
|
| 360 |
+
st.session_state.image_prompt = False
|
| 361 |
else:
|
| 362 |
response = generate_llm_response(prompt, tool_choice="auto")
|
| 363 |
placeholder = st.empty()
|
vision_api.py
CHANGED
|
@@ -9,6 +9,14 @@ def get_transcribed_text(base64_image):
|
|
| 9 |
"Content-Type": "application/json",
|
| 10 |
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
| 11 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
payload = {
|
| 14 |
"model": "gpt-4-vision-preview",
|
|
@@ -18,7 +26,7 @@ def get_transcribed_text(base64_image):
|
|
| 18 |
"content": [
|
| 19 |
{
|
| 20 |
"type": "text",
|
| 21 |
-
"text":
|
| 22 |
},
|
| 23 |
{
|
| 24 |
"type": "image_url",
|
|
|
|
| 9 |
"Content-Type": "application/json",
|
| 10 |
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
| 11 |
}
|
| 12 |
+
image_prompt = (
|
| 13 |
+
"Understand and interpret the image properly, there could be "
|
| 14 |
+
"handwritten notes or scribbles beside the electronic text. "
|
| 15 |
+
"Once you have sufficient understanding of the image, "
|
| 16 |
+
"transcribed them into text. If the content is a question, "
|
| 17 |
+
"convert the question into text."
|
| 18 |
+
)
|
| 19 |
+
print(image_prompt)
|
| 20 |
|
| 21 |
payload = {
|
| 22 |
"model": "gpt-4-vision-preview",
|
|
|
|
| 26 |
"content": [
|
| 27 |
{
|
| 28 |
"type": "text",
|
| 29 |
+
"text": image_prompt
|
| 30 |
},
|
| 31 |
{
|
| 32 |
"type": "image_url",
|