Spaces:
Runtime error
Runtime error
Commit
·
bd54294
1
Parent(s):
94f18ea
cache chroma_db, fine-tuned-embeddings, etc.
Browse files- .gitattributes +1 -0
- database/mock_qna.db +3 -0
- database/mock_qna_source.csv +3 -0
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/data_level0.bin +1 -1
- models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/length.bin +1 -1
- models/chroma_db/chroma.sqlite3 +2 -2
- models/fine-tuned-embeddings/1_Pooling/config.json +3 -0
- models/fine-tuned-embeddings/README.md +3 -0
- models/fine-tuned-embeddings/config.json +3 -0
- models/fine-tuned-embeddings/config_sentence_transformers.json +3 -0
- models/fine-tuned-embeddings/eval/Information-Retrieval_evaluation_results.csv +3 -0
- models/fine-tuned-embeddings/model.safetensors +3 -0
- models/fine-tuned-embeddings/modules.json +3 -0
- models/fine-tuned-embeddings/sentence_bert_config.json +3 -0
- models/fine-tuned-embeddings/special_tokens_map.json +3 -0
- models/fine-tuned-embeddings/tokenizer.json +3 -0
- models/fine-tuned-embeddings/tokenizer_config.json +3 -0
- models/fine-tuned-embeddings/vocab.txt +3 -0
- notebooks/create_mock_qna.ipynb +311 -0
- notebooks/fine-tune-and-persist-vector-store.ipynb +33 -0
- notebooks/fine-tuning-embedding-model.ipynb +64 -752
- notebooks/persisted-embedding-model.ipynb +224 -1
- notebooks/qna_prompting_with_function_calling.ipynb +399 -0
- notebooks/qna_prompting_with_pydantic.ipynb +114 -0
- raw_documents/qna.txt +2 -2
- requirements.txt +3 -1
- streamlit_app.py +57 -19
.gitattributes
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
raw_documents/** filter=lfs diff=lfs merge=lfs -text
|
| 2 |
models/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 1 |
raw_documents/** filter=lfs diff=lfs merge=lfs -text
|
| 2 |
models/** filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
database/** filter=lfs diff=lfs merge=lfs -text
|
database/mock_qna.db
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c380902975056aca9cbc32ff2948725fc9901a59ae01e2cf1634f475e1c889f
|
| 3 |
+
size 8192
|
database/mock_qna_source.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b604288137e94da640f1e5a88900390084eba746508cd7257dbcdba8cbe67f32
|
| 3 |
+
size 2701
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/data_level0.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1676000
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d37c44e68139700bd5cfddc1f64e610ae6d974b559548175754eac7df1ac8065
|
| 3 |
size 1676000
|
models/chroma_db/9b83ffa5-f19f-42a5-b97f-969906ca1a4f/length.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4000
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc19b1997119425765295aeab72d76faa6927d4f83985d328c26f20468d6cc76
|
| 3 |
size 4000
|
models/chroma_db/chroma.sqlite3
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ffe0f3842c7835daddb5c11b8f70bb5dc6352abcb91c11f30c53a49d8c6d540c
|
| 3 |
+
size 23486464
|
models/fine-tuned-embeddings/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cfd7e0a022036d0ffa0f998824a918247d5a7473d968cdc92e318fd04098e682
|
| 3 |
+
size 270
|
models/fine-tuned-embeddings/README.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:399b632f51b91d4c9c104040c22f21cfb73e671c14975f78af346a238ccd43f1
|
| 3 |
+
size 2544
|
models/fine-tuned-embeddings/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13582bcf2effc85b7bf3d3f5532e686bc1c9ce86bb009d10f0ec33cbe92299dd
|
| 3 |
+
size 706
|
models/fine-tuned-embeddings/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:940d5f50db195fa6e5e6a4f122c095f77880de259d74b14a65779ed48bdd7c56
|
| 3 |
+
size 124
|
models/fine-tuned-embeddings/eval/Information-Retrieval_evaluation_results.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:858293a2164d38e8abf7e46e701d54a46acc966b5b0ee71355693d339ecc648f
|
| 3 |
+
size 6519
|
models/fine-tuned-embeddings/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc291c956c8b74f5f8336412568855a17957e71ecb95d0dc1b7429aadee084f4
|
| 3 |
+
size 133462128
|
models/fine-tuned-embeddings/modules.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e40c8e006c9b1d6c122e02cba9b02458120b5fb0c87b746c41e0207cf642cf
|
| 3 |
+
size 349
|
models/fine-tuned-embeddings/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:84e39fda68ccbff05bfa723ae9c0e70e23e2ec373b76e0f8c6e71af72a693cbf
|
| 3 |
+
size 52
|
models/fine-tuned-embeddings/special_tokens_map.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d5b662e421ea9fac075174bb0688ee0d9431699900b90662acd44b2a350503a
|
| 3 |
+
size 695
|
models/fine-tuned-embeddings/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:91f1def9b9391fdabe028cd3f3fcc4efd34e5d1f08c3bf2de513ebb5911a1854
|
| 3 |
+
size 711649
|
models/fine-tuned-embeddings/tokenizer_config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b29c7bfc889e53b36d9dd3e686dd4300f6525110eaa98c76a5dafceb2029f53
|
| 3 |
+
size 1242
|
models/fine-tuned-embeddings/vocab.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
|
| 3 |
+
size 231508
|
notebooks/create_mock_qna.ipynb
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "23b388fd-2a24-48cf-9cf8-fd5cd19257d8",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import os\n",
|
| 11 |
+
"import sqlite3\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"import pandas as pd"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": null,
|
| 19 |
+
"id": "1edf4aeb-bcb3-42f6-b3f7-9f9543b5ab12",
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"outputs": [],
|
| 22 |
+
"source": []
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "markdown",
|
| 26 |
+
"id": "04969710-e7b7-4017-8eb7-fc50ee99df6f",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"source": [
|
| 29 |
+
"### Parameters"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": null,
|
| 35 |
+
"id": "7cf683dc-93fc-4497-9641-75f0a3c1ba12",
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"outputs": [],
|
| 38 |
+
"source": [
|
| 39 |
+
"db_path = \"../database/mock_qna.db\"\n",
|
| 40 |
+
"nature_of_run = \"new\" if not os.path.exists(db_path) else \"existing\"\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"qna_path = \"../database/mock_qna_source.csv\""
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": null,
|
| 48 |
+
"id": "b6cca63e-021b-4950-ab9f-0e3170194c35",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"print(f\"nature of run: `{nature_of_run}`\")"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": null,
|
| 58 |
+
"id": "add28f2e-d695-42a5-97e5-3647dd768dce",
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"qna_data = pd.read_csv( qna_path )\n",
|
| 63 |
+
"qna_cols = list(qna_data.columns)\n",
|
| 64 |
+
"qna_data.shape"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
+
"id": "26fa3a67-71d9-4410-b0ea-9c1e08ca2f51",
|
| 71 |
+
"metadata": {},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"qna_data[:3]"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": null,
|
| 80 |
+
"id": "2a20c4ee-ae53-4582-a660-54e40f8f1dd5",
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"outputs": [],
|
| 83 |
+
"source": []
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "markdown",
|
| 87 |
+
"id": "1167bb3a-97fd-48b1-a0a9-eab6e4d54245",
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"source": [
|
| 90 |
+
"### Initialize database connection & resources"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": null,
|
| 96 |
+
"id": "095b8a2e-c3cb-4c09-b49d-ccb5df8467b0",
|
| 97 |
+
"metadata": {},
|
| 98 |
+
"outputs": [],
|
| 99 |
+
"source": [
|
| 100 |
+
"con = sqlite3.connect(db_path)"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": null,
|
| 106 |
+
"id": "f2668a87-be3c-464d-a4ad-4e40590cbd0c",
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"outputs": [],
|
| 109 |
+
"source": [
|
| 110 |
+
"cur = con.cursor()"
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"cell_type": "code",
|
| 115 |
+
"execution_count": null,
|
| 116 |
+
"id": "4437d3cb-b92b-40ef-b030-b7fb4499d0e7",
|
| 117 |
+
"metadata": {},
|
| 118 |
+
"outputs": [],
|
| 119 |
+
"source": [
|
| 120 |
+
"if nature_of_run == \"new\":\n",
|
| 121 |
+
" qna_cols_str = \", \".join(qna_cols)\n",
|
| 122 |
+
" cur.execute(f\"\"\"CREATE TABLE qna_tbl (\n",
|
| 123 |
+
" {qna_cols_str}\n",
|
| 124 |
+
" )\n",
|
| 125 |
+
" \"\"\")\n",
|
| 126 |
+
" print(\"created table `qna_tbl`\")\n",
|
| 127 |
+
" print(f\"columns for `qna_tbl` are {qna_cols_str}\")"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"execution_count": null,
|
| 133 |
+
"id": "a6153892-4d8b-487e-bd1d-05577ef1fcb5",
|
| 134 |
+
"metadata": {},
|
| 135 |
+
"outputs": [],
|
| 136 |
+
"source": []
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"cell_type": "markdown",
|
| 140 |
+
"id": "cdc0a81b-fb0a-46fa-9646-1a78c2781f02",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"source": [
|
| 143 |
+
"#### Test fetching empty table"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": null,
|
| 149 |
+
"id": "dce53aec-680e-4f0f-b6eb-71efe902231a",
|
| 150 |
+
"metadata": {},
|
| 151 |
+
"outputs": [],
|
| 152 |
+
"source": [
|
| 153 |
+
"res = cur.execute(\"SELECT chapter, question FROM qna_tbl\")"
|
| 154 |
+
]
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"cell_type": "code",
|
| 158 |
+
"execution_count": null,
|
| 159 |
+
"id": "506527e2-4d6d-4817-bdaf-9a31fec3b006",
|
| 160 |
+
"metadata": {},
|
| 161 |
+
"outputs": [],
|
| 162 |
+
"source": [
|
| 163 |
+
"res.fetchone()"
|
| 164 |
+
]
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"cell_type": "code",
|
| 168 |
+
"execution_count": null,
|
| 169 |
+
"id": "69f74ed2-a1da-410a-b759-d334fcf37851",
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"outputs": [],
|
| 172 |
+
"source": []
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"cell_type": "markdown",
|
| 176 |
+
"id": "e82debcf-c3e4-4c93-8e59-2c73ead63adc",
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"source": [
|
| 179 |
+
"#### Test ingesting one record of data"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "code",
|
| 184 |
+
"execution_count": null,
|
| 185 |
+
"id": "e239f941-d19b-4400-acac-8a45b7b50fcc",
|
| 186 |
+
"metadata": {},
|
| 187 |
+
"outputs": [],
|
| 188 |
+
"source": [
|
| 189 |
+
"data = qna_data.values.tolist()\n",
|
| 190 |
+
"q_mark_list = [\"?\"] * len(qna_cols)\n",
|
| 191 |
+
"q_mark_str = \"(\" + \", \".join(q_mark_list) + \")\""
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"cell_type": "code",
|
| 196 |
+
"execution_count": null,
|
| 197 |
+
"id": "93b7130b-b007-4359-a0a2-bfe5fb7ddba2",
|
| 198 |
+
"metadata": {},
|
| 199 |
+
"outputs": [],
|
| 200 |
+
"source": [
|
| 201 |
+
"cur.executemany(f\"INSERT INTO qna_tbl VALUES {q_mark_str}\", data[:1])\n",
|
| 202 |
+
"con.commit()"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": null,
|
| 208 |
+
"id": "5f01dac9-c9f5-4536-85d4-667abd8f178d",
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": []
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"cell_type": "markdown",
|
| 215 |
+
"id": "bf8b1f1d-08fd-4a07-9489-58ef14b8439d",
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"source": [
|
| 218 |
+
"#### Test fetching one record of data"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"id": "26206800-54c0-495e-bf8f-5958421eddca",
|
| 225 |
+
"metadata": {},
|
| 226 |
+
"outputs": [],
|
| 227 |
+
"source": [
|
| 228 |
+
"res = cur.execute(\"SELECT chapter, question FROM qna_tbl\")\n",
|
| 229 |
+
"res.fetchone()"
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "code",
|
| 234 |
+
"execution_count": null,
|
| 235 |
+
"id": "54722955-7e72-4723-88ca-a0dbee361934",
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"outputs": [],
|
| 238 |
+
"source": []
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"cell_type": "markdown",
|
| 242 |
+
"id": "54ec1451-fe61-4a92-9148-d4a3d05aeed8",
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"source": [
|
| 245 |
+
"#### Clean up and ingest full Q&A data"
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "code",
|
| 250 |
+
"execution_count": null,
|
| 251 |
+
"id": "64131faf-b2e7-4e70-8547-762a09ed2ad2",
|
| 252 |
+
"metadata": {},
|
| 253 |
+
"outputs": [],
|
| 254 |
+
"source": [
|
| 255 |
+
"cur.execute(\"DELETE FROM qna_tbl\")\n",
|
| 256 |
+
"con.commit()"
|
| 257 |
+
]
|
| 258 |
+
},
|
| 259 |
+
{
|
| 260 |
+
"cell_type": "code",
|
| 261 |
+
"execution_count": null,
|
| 262 |
+
"id": "06d55885-50b1-4c23-a364-1fb8fa4f4b36",
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"outputs": [],
|
| 265 |
+
"source": [
|
| 266 |
+
"cur.executemany(f\"INSERT INTO qna_tbl VALUES {q_mark_str}\", data)\n",
|
| 267 |
+
"con.commit()"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"id": "9e2a3d06-a077-4b32-8fce-600b3577cad9",
|
| 274 |
+
"metadata": {},
|
| 275 |
+
"outputs": [],
|
| 276 |
+
"source": [
|
| 277 |
+
"res = cur.execute(\"SELECT COUNT(*) FROM qna_tbl\")\n",
|
| 278 |
+
"res.fetchone()"
|
| 279 |
+
]
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"cell_type": "code",
|
| 283 |
+
"execution_count": null,
|
| 284 |
+
"id": "9256ad33-f70a-482c-801e-01b5a52e8261",
|
| 285 |
+
"metadata": {},
|
| 286 |
+
"outputs": [],
|
| 287 |
+
"source": []
|
| 288 |
+
}
|
| 289 |
+
],
|
| 290 |
+
"metadata": {
|
| 291 |
+
"kernelspec": {
|
| 292 |
+
"display_name": "Python 3 (ipykernel)",
|
| 293 |
+
"language": "python",
|
| 294 |
+
"name": "python3"
|
| 295 |
+
},
|
| 296 |
+
"language_info": {
|
| 297 |
+
"codemirror_mode": {
|
| 298 |
+
"name": "ipython",
|
| 299 |
+
"version": 3
|
| 300 |
+
},
|
| 301 |
+
"file_extension": ".py",
|
| 302 |
+
"mimetype": "text/x-python",
|
| 303 |
+
"name": "python",
|
| 304 |
+
"nbconvert_exporter": "python",
|
| 305 |
+
"pygments_lexer": "ipython3",
|
| 306 |
+
"version": "3.9.18"
|
| 307 |
+
}
|
| 308 |
+
},
|
| 309 |
+
"nbformat": 4,
|
| 310 |
+
"nbformat_minor": 5
|
| 311 |
+
}
|
notebooks/fine-tune-and-persist-vector-store.ipynb
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "10638b27-aa20-43a6-bee6-b7b97f64996e",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": []
|
| 10 |
+
}
|
| 11 |
+
],
|
| 12 |
+
"metadata": {
|
| 13 |
+
"kernelspec": {
|
| 14 |
+
"display_name": "Python 3 (ipykernel)",
|
| 15 |
+
"language": "python",
|
| 16 |
+
"name": "python3"
|
| 17 |
+
},
|
| 18 |
+
"language_info": {
|
| 19 |
+
"codemirror_mode": {
|
| 20 |
+
"name": "ipython",
|
| 21 |
+
"version": 3
|
| 22 |
+
},
|
| 23 |
+
"file_extension": ".py",
|
| 24 |
+
"mimetype": "text/x-python",
|
| 25 |
+
"name": "python",
|
| 26 |
+
"nbconvert_exporter": "python",
|
| 27 |
+
"pygments_lexer": "ipython3",
|
| 28 |
+
"version": "3.9.18"
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"nbformat": 4,
|
| 32 |
+
"nbformat_minor": 5
|
| 33 |
+
}
|
notebooks/fine-tuning-embedding-model.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"id": "ca2c990f-5215-4ab9-8143-1d79db28edc6",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
@@ -16,7 +16,7 @@
|
|
| 16 |
},
|
| 17 |
{
|
| 18 |
"cell_type": "code",
|
| 19 |
-
"execution_count":
|
| 20 |
"id": "2c535ad7-7846-4bef-8ba8-33e182490c3d",
|
| 21 |
"metadata": {},
|
| 22 |
"outputs": [],
|
|
@@ -30,7 +30,7 @@
|
|
| 30 |
},
|
| 31 |
{
|
| 32 |
"cell_type": "code",
|
| 33 |
-
"execution_count":
|
| 34 |
"id": "25f0c7a3-c52f-4417-aec8-4b6cfbf7a1b5",
|
| 35 |
"metadata": {},
|
| 36 |
"outputs": [],
|
|
@@ -44,7 +44,7 @@
|
|
| 44 |
},
|
| 45 |
{
|
| 46 |
"cell_type": "code",
|
| 47 |
-
"execution_count":
|
| 48 |
"id": "62f4d7f0-748a-405e-b5f1-6520fd02bedc",
|
| 49 |
"metadata": {},
|
| 50 |
"outputs": [],
|
|
@@ -56,7 +56,7 @@
|
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"cell_type": "code",
|
| 59 |
-
"execution_count":
|
| 60 |
"id": "12527049-a5cb-423c-8de5-099aee970c85",
|
| 61 |
"metadata": {},
|
| 62 |
"outputs": [],
|
|
@@ -66,18 +66,10 @@
|
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"cell_type": "code",
|
| 69 |
-
"execution_count":
|
| 70 |
"id": "abde5e6c-3474-460c-9fac-4f3352c38b53",
|
| 71 |
"metadata": {},
|
| 72 |
-
"outputs": [
|
| 73 |
-
{
|
| 74 |
-
"name": "stdout",
|
| 75 |
-
"output_type": "stream",
|
| 76 |
-
"text": [
|
| 77 |
-
"0.9.39\n"
|
| 78 |
-
]
|
| 79 |
-
}
|
| 80 |
-
],
|
| 81 |
"source": [
|
| 82 |
"import llama_index\n",
|
| 83 |
"print(llama_index.__version__)"
|
|
@@ -93,7 +85,7 @@
|
|
| 93 |
},
|
| 94 |
{
|
| 95 |
"cell_type": "code",
|
| 96 |
-
"execution_count":
|
| 97 |
"id": "978cf71f-1ce7-4598-92fe-18fe22ca37c6",
|
| 98 |
"metadata": {},
|
| 99 |
"outputs": [],
|
|
@@ -115,7 +107,7 @@
|
|
| 115 |
},
|
| 116 |
{
|
| 117 |
"cell_type": "code",
|
| 118 |
-
"execution_count":
|
| 119 |
"id": "26f614c8-eb45-4cc1-b067-2c7299587982",
|
| 120 |
"metadata": {},
|
| 121 |
"outputs": [],
|
|
@@ -148,7 +140,7 @@
|
|
| 148 |
},
|
| 149 |
{
|
| 150 |
"cell_type": "code",
|
| 151 |
-
"execution_count":
|
| 152 |
"id": "84cc4308-8ac4-4eba-9478-b81d5b645c48",
|
| 153 |
"metadata": {},
|
| 154 |
"outputs": [],
|
|
@@ -184,7 +176,7 @@
|
|
| 184 |
},
|
| 185 |
{
|
| 186 |
"cell_type": "code",
|
| 187 |
-
"execution_count":
|
| 188 |
"id": "8f17c832-e9ae-477b-8bf7-a9c8410f1ed8",
|
| 189 |
"metadata": {},
|
| 190 |
"outputs": [],
|
|
@@ -192,7 +184,7 @@
|
|
| 192 |
"finetune_engine = SentenceTransformersFinetuneEngine(\n",
|
| 193 |
" train_dataset,\n",
|
| 194 |
" model_id=\"BAAI/bge-small-en-v1.5\",\n",
|
| 195 |
-
" model_output_path=\"
|
| 196 |
" batch_size=5,\n",
|
| 197 |
" val_dataset=val_dataset\n",
|
| 198 |
")"
|
|
@@ -200,60 +192,17 @@
|
|
| 200 |
},
|
| 201 |
{
|
| 202 |
"cell_type": "code",
|
| 203 |
-
"execution_count":
|
| 204 |
"id": "a6498d0b-da9a-4f7f-8c85-c9bf4d772c72",
|
| 205 |
"metadata": {},
|
| 206 |
-
"outputs": [
|
| 207 |
-
{
|
| 208 |
-
"data": {
|
| 209 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 210 |
-
"model_id": "e80f94e7c7a84014b3cbf270dde3fcaf",
|
| 211 |
-
"version_major": 2,
|
| 212 |
-
"version_minor": 0
|
| 213 |
-
},
|
| 214 |
-
"text/plain": [
|
| 215 |
-
"Epoch: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 216 |
-
]
|
| 217 |
-
},
|
| 218 |
-
"metadata": {},
|
| 219 |
-
"output_type": "display_data"
|
| 220 |
-
},
|
| 221 |
-
{
|
| 222 |
-
"data": {
|
| 223 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 224 |
-
"model_id": "d02eb3c3b1454494a566557e8b73174f",
|
| 225 |
-
"version_major": 2,
|
| 226 |
-
"version_minor": 0
|
| 227 |
-
},
|
| 228 |
-
"text/plain": [
|
| 229 |
-
"Iteration: 0%| | 0/183 [00:00<?, ?it/s]"
|
| 230 |
-
]
|
| 231 |
-
},
|
| 232 |
-
"metadata": {},
|
| 233 |
-
"output_type": "display_data"
|
| 234 |
-
},
|
| 235 |
-
{
|
| 236 |
-
"data": {
|
| 237 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 238 |
-
"model_id": "0d73a19c286e43afa7c12cfb5fb49d34",
|
| 239 |
-
"version_major": 2,
|
| 240 |
-
"version_minor": 0
|
| 241 |
-
},
|
| 242 |
-
"text/plain": [
|
| 243 |
-
"Iteration: 0%| | 0/183 [00:00<?, ?it/s]"
|
| 244 |
-
]
|
| 245 |
-
},
|
| 246 |
-
"metadata": {},
|
| 247 |
-
"output_type": "display_data"
|
| 248 |
-
}
|
| 249 |
-
],
|
| 250 |
"source": [
|
| 251 |
"finetune_engine.finetune()"
|
| 252 |
]
|
| 253 |
},
|
| 254 |
{
|
| 255 |
"cell_type": "code",
|
| 256 |
-
"execution_count":
|
| 257 |
"id": "e057b405-aa0e-4e78-91e0-9bf40f01c1a9",
|
| 258 |
"metadata": {},
|
| 259 |
"outputs": [],
|
|
@@ -263,21 +212,10 @@
|
|
| 263 |
},
|
| 264 |
{
|
| 265 |
"cell_type": "code",
|
| 266 |
-
"execution_count":
|
| 267 |
"id": "72d9f97a-0902-4e65-8459-b34613e419f6",
|
| 268 |
"metadata": {},
|
| 269 |
-
"outputs": [
|
| 270 |
-
{
|
| 271 |
-
"data": {
|
| 272 |
-
"text/plain": [
|
| 273 |
-
"HuggingFaceEmbedding(model_name='test_model', embed_batch_size=10, callback_manager=<llama_index.callbacks.base.CallbackManager object at 0x3c7fadca0>, tokenizer_name='test_model', max_length=512, pooling=<Pooling.CLS: 'cls'>, normalize=True, query_instruction=None, text_instruction=None, cache_folder=None)"
|
| 274 |
-
]
|
| 275 |
-
},
|
| 276 |
-
"execution_count": 14,
|
| 277 |
-
"metadata": {},
|
| 278 |
-
"output_type": "execute_result"
|
| 279 |
-
}
|
| 280 |
-
],
|
| 281 |
"source": [
|
| 282 |
"embed_model"
|
| 283 |
]
|
|
@@ -285,11 +223,21 @@
|
|
| 285 |
{
|
| 286 |
"cell_type": "code",
|
| 287 |
"execution_count": null,
|
| 288 |
-
"id": "
|
| 289 |
"metadata": {},
|
| 290 |
"outputs": [],
|
| 291 |
"source": []
|
| 292 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
{
|
| 294 |
"cell_type": "code",
|
| 295 |
"execution_count": null,
|
|
@@ -300,7 +248,7 @@
|
|
| 300 |
},
|
| 301 |
{
|
| 302 |
"cell_type": "code",
|
| 303 |
-
"execution_count":
|
| 304 |
"id": "ac4a1a5b-974d-452e-8507-0950c962f9b2",
|
| 305 |
"metadata": {},
|
| 306 |
"outputs": [],
|
|
@@ -341,7 +289,7 @@
|
|
| 341 |
},
|
| 342 |
{
|
| 343 |
"cell_type": "code",
|
| 344 |
-
"execution_count":
|
| 345 |
"id": "a53cf893-ce9f-4d9d-ad4a-e9e17fb058d3",
|
| 346 |
"metadata": {},
|
| 347 |
"outputs": [],
|
|
@@ -359,7 +307,7 @@
|
|
| 359 |
" queries, corpus, relevant_docs, name=name\n",
|
| 360 |
" )\n",
|
| 361 |
" model = SentenceTransformer(model_id)\n",
|
| 362 |
-
" output_path = \"results/\"\n",
|
| 363 |
" Path(output_path).mkdir(exist_ok=True, parents=True)\n",
|
| 364 |
" return evaluator(model, output_path=output_path)"
|
| 365 |
]
|
|
@@ -390,49 +338,10 @@
|
|
| 390 |
},
|
| 391 |
{
|
| 392 |
"cell_type": "code",
|
| 393 |
-
"execution_count":
|
| 394 |
"id": "91f057aa-4b59-48ea-b3d5-23012a4d487f",
|
| 395 |
"metadata": {},
|
| 396 |
-
"outputs": [
|
| 397 |
-
{
|
| 398 |
-
"data": {
|
| 399 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 400 |
-
"model_id": "f4bf05fbe14c4c379c0b3e1912b84d36",
|
| 401 |
-
"version_major": 2,
|
| 402 |
-
"version_minor": 0
|
| 403 |
-
},
|
| 404 |
-
"text/plain": [
|
| 405 |
-
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
| 406 |
-
]
|
| 407 |
-
},
|
| 408 |
-
"metadata": {},
|
| 409 |
-
"output_type": "display_data"
|
| 410 |
-
},
|
| 411 |
-
{
|
| 412 |
-
"name": "stderr",
|
| 413 |
-
"output_type": "stream",
|
| 414 |
-
"text": [
|
| 415 |
-
"huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
|
| 416 |
-
"To disable this warning, you can either:\n",
|
| 417 |
-
"\t- Avoid using `tokenizers` before the fork if possible\n",
|
| 418 |
-
"\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n"
|
| 419 |
-
]
|
| 420 |
-
},
|
| 421 |
-
{
|
| 422 |
-
"data": {
|
| 423 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 424 |
-
"model_id": "4f365d1cab004fe897949e2a3928c457",
|
| 425 |
-
"version_major": 2,
|
| 426 |
-
"version_minor": 0
|
| 427 |
-
},
|
| 428 |
-
"text/plain": [
|
| 429 |
-
" 0%| | 0/200 [00:00<?, ?it/s]"
|
| 430 |
-
]
|
| 431 |
-
},
|
| 432 |
-
"metadata": {},
|
| 433 |
-
"output_type": "display_data"
|
| 434 |
-
}
|
| 435 |
-
],
|
| 436 |
"source": [
|
| 437 |
"ada = OpenAIEmbedding()\n",
|
| 438 |
"ada_val_results = evaluate(val_dataset, ada)"
|
|
@@ -440,7 +349,7 @@
|
|
| 440 |
},
|
| 441 |
{
|
| 442 |
"cell_type": "code",
|
| 443 |
-
"execution_count":
|
| 444 |
"id": "5d2f59c6-75d3-4970-bac3-dfe0eef00efe",
|
| 445 |
"metadata": {},
|
| 446 |
"outputs": [],
|
|
@@ -450,119 +359,20 @@
|
|
| 450 |
},
|
| 451 |
{
|
| 452 |
"cell_type": "code",
|
| 453 |
-
"execution_count":
|
| 454 |
"id": "7a697cd8-6f39-4d5b-84f4-f08cf58adc4a",
|
| 455 |
"metadata": {},
|
| 456 |
-
"outputs": [
|
| 457 |
-
{
|
| 458 |
-
"data": {
|
| 459 |
-
"text/html": [
|
| 460 |
-
"<div>\n",
|
| 461 |
-
"<style scoped>\n",
|
| 462 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 463 |
-
" vertical-align: middle;\n",
|
| 464 |
-
" }\n",
|
| 465 |
-
"\n",
|
| 466 |
-
" .dataframe tbody tr th {\n",
|
| 467 |
-
" vertical-align: top;\n",
|
| 468 |
-
" }\n",
|
| 469 |
-
"\n",
|
| 470 |
-
" .dataframe thead th {\n",
|
| 471 |
-
" text-align: right;\n",
|
| 472 |
-
" }\n",
|
| 473 |
-
"</style>\n",
|
| 474 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 475 |
-
" <thead>\n",
|
| 476 |
-
" <tr style=\"text-align: right;\">\n",
|
| 477 |
-
" <th></th>\n",
|
| 478 |
-
" <th>is_hit</th>\n",
|
| 479 |
-
" <th>retrieved</th>\n",
|
| 480 |
-
" <th>expected</th>\n",
|
| 481 |
-
" <th>query</th>\n",
|
| 482 |
-
" </tr>\n",
|
| 483 |
-
" </thead>\n",
|
| 484 |
-
" <tbody>\n",
|
| 485 |
-
" <tr>\n",
|
| 486 |
-
" <th>0</th>\n",
|
| 487 |
-
" <td>False</td>\n",
|
| 488 |
-
" <td>[5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804...</td>\n",
|
| 489 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 490 |
-
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
| 491 |
-
" </tr>\n",
|
| 492 |
-
" <tr>\n",
|
| 493 |
-
" <th>1</th>\n",
|
| 494 |
-
" <td>True</td>\n",
|
| 495 |
-
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804...</td>\n",
|
| 496 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 497 |
-
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
| 498 |
-
" </tr>\n",
|
| 499 |
-
" <tr>\n",
|
| 500 |
-
" <th>2</th>\n",
|
| 501 |
-
" <td>True</td>\n",
|
| 502 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
| 503 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 504 |
-
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
| 505 |
-
" </tr>\n",
|
| 506 |
-
" <tr>\n",
|
| 507 |
-
" <th>3</th>\n",
|
| 508 |
-
" <td>True</td>\n",
|
| 509 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
| 510 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 511 |
-
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
| 512 |
-
" </tr>\n",
|
| 513 |
-
" <tr>\n",
|
| 514 |
-
" <th>4</th>\n",
|
| 515 |
-
" <td>True</td>\n",
|
| 516 |
-
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
| 517 |
-
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
| 518 |
-
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
| 519 |
-
" </tr>\n",
|
| 520 |
-
" </tbody>\n",
|
| 521 |
-
"</table>\n",
|
| 522 |
-
"</div>"
|
| 523 |
-
],
|
| 524 |
-
"text/plain": [
|
| 525 |
-
" is_hit retrieved \\\n",
|
| 526 |
-
"0 False [5b9cd986-33dc-46f1-abae-e4e1dc9e3629, c3c1804... \n",
|
| 527 |
-
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, c3c1804... \n",
|
| 528 |
-
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
| 529 |
-
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
| 530 |
-
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
| 531 |
-
"\n",
|
| 532 |
-
" expected query \n",
|
| 533 |
-
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
| 534 |
-
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
| 535 |
-
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
| 536 |
-
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
| 537 |
-
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
| 538 |
-
]
|
| 539 |
-
},
|
| 540 |
-
"execution_count": 24,
|
| 541 |
-
"metadata": {},
|
| 542 |
-
"output_type": "execute_result"
|
| 543 |
-
}
|
| 544 |
-
],
|
| 545 |
"source": [
|
| 546 |
"df_ada[:5]"
|
| 547 |
]
|
| 548 |
},
|
| 549 |
{
|
| 550 |
"cell_type": "code",
|
| 551 |
-
"execution_count":
|
| 552 |
"id": "3f7186fb-f392-4531-8959-25161e3905e4",
|
| 553 |
"metadata": {},
|
| 554 |
-
"outputs": [
|
| 555 |
-
{
|
| 556 |
-
"data": {
|
| 557 |
-
"text/plain": [
|
| 558 |
-
"(0.955, 200)"
|
| 559 |
-
]
|
| 560 |
-
},
|
| 561 |
-
"execution_count": 27,
|
| 562 |
-
"metadata": {},
|
| 563 |
-
"output_type": "execute_result"
|
| 564 |
-
}
|
| 565 |
-
],
|
| 566 |
"source": [
|
| 567 |
"hit_rate_ada = df_ada[\"is_hit\"].mean()\n",
|
| 568 |
"hit_rate_ada, len(df_ada)"
|
|
@@ -586,123 +396,10 @@
|
|
| 586 |
},
|
| 587 |
{
|
| 588 |
"cell_type": "code",
|
| 589 |
-
"execution_count":
|
| 590 |
"id": "b2905831-0eb9-4ea7-a0b9-5db286b0965e",
|
| 591 |
"metadata": {},
|
| 592 |
-
"outputs": [
|
| 593 |
-
{
|
| 594 |
-
"data": {
|
| 595 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 596 |
-
"model_id": "784a67a3d51a400cad53c52bb16121fc",
|
| 597 |
-
"version_major": 2,
|
| 598 |
-
"version_minor": 0
|
| 599 |
-
},
|
| 600 |
-
"text/plain": [
|
| 601 |
-
"config.json: 0%| | 0.00/743 [00:00<?, ?B/s]"
|
| 602 |
-
]
|
| 603 |
-
},
|
| 604 |
-
"metadata": {},
|
| 605 |
-
"output_type": "display_data"
|
| 606 |
-
},
|
| 607 |
-
{
|
| 608 |
-
"data": {
|
| 609 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 610 |
-
"model_id": "1c0edb74b4154cb49931180def479320",
|
| 611 |
-
"version_major": 2,
|
| 612 |
-
"version_minor": 0
|
| 613 |
-
},
|
| 614 |
-
"text/plain": [
|
| 615 |
-
"model.safetensors: 0%| | 0.00/133M [00:00<?, ?B/s]"
|
| 616 |
-
]
|
| 617 |
-
},
|
| 618 |
-
"metadata": {},
|
| 619 |
-
"output_type": "display_data"
|
| 620 |
-
},
|
| 621 |
-
{
|
| 622 |
-
"data": {
|
| 623 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 624 |
-
"model_id": "af9cb2f4d3934e9a991969f0083fa495",
|
| 625 |
-
"version_major": 2,
|
| 626 |
-
"version_minor": 0
|
| 627 |
-
},
|
| 628 |
-
"text/plain": [
|
| 629 |
-
"tokenizer_config.json: 0%| | 0.00/366 [00:00<?, ?B/s]"
|
| 630 |
-
]
|
| 631 |
-
},
|
| 632 |
-
"metadata": {},
|
| 633 |
-
"output_type": "display_data"
|
| 634 |
-
},
|
| 635 |
-
{
|
| 636 |
-
"data": {
|
| 637 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 638 |
-
"model_id": "2370d77040d94ffb9a4d8ca2f45faa97",
|
| 639 |
-
"version_major": 2,
|
| 640 |
-
"version_minor": 0
|
| 641 |
-
},
|
| 642 |
-
"text/plain": [
|
| 643 |
-
"vocab.txt: 0%| | 0.00/232k [00:00<?, ?B/s]"
|
| 644 |
-
]
|
| 645 |
-
},
|
| 646 |
-
"metadata": {},
|
| 647 |
-
"output_type": "display_data"
|
| 648 |
-
},
|
| 649 |
-
{
|
| 650 |
-
"data": {
|
| 651 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 652 |
-
"model_id": "0b7c293a142d4eaf91673c17222d232a",
|
| 653 |
-
"version_major": 2,
|
| 654 |
-
"version_minor": 0
|
| 655 |
-
},
|
| 656 |
-
"text/plain": [
|
| 657 |
-
"tokenizer.json: 0%| | 0.00/711k [00:00<?, ?B/s]"
|
| 658 |
-
]
|
| 659 |
-
},
|
| 660 |
-
"metadata": {},
|
| 661 |
-
"output_type": "display_data"
|
| 662 |
-
},
|
| 663 |
-
{
|
| 664 |
-
"data": {
|
| 665 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 666 |
-
"model_id": "7fcb86d759084084a8e41aec12738e19",
|
| 667 |
-
"version_major": 2,
|
| 668 |
-
"version_minor": 0
|
| 669 |
-
},
|
| 670 |
-
"text/plain": [
|
| 671 |
-
"special_tokens_map.json: 0%| | 0.00/125 [00:00<?, ?B/s]"
|
| 672 |
-
]
|
| 673 |
-
},
|
| 674 |
-
"metadata": {},
|
| 675 |
-
"output_type": "display_data"
|
| 676 |
-
},
|
| 677 |
-
{
|
| 678 |
-
"data": {
|
| 679 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 680 |
-
"model_id": "ab4d747b58f74fdb86481b7f936bf0c4",
|
| 681 |
-
"version_major": 2,
|
| 682 |
-
"version_minor": 0
|
| 683 |
-
},
|
| 684 |
-
"text/plain": [
|
| 685 |
-
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
| 686 |
-
]
|
| 687 |
-
},
|
| 688 |
-
"metadata": {},
|
| 689 |
-
"output_type": "display_data"
|
| 690 |
-
},
|
| 691 |
-
{
|
| 692 |
-
"data": {
|
| 693 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 694 |
-
"model_id": "baa0bb9ae0da4dfc86c20308477415fa",
|
| 695 |
-
"version_major": 2,
|
| 696 |
-
"version_minor": 0
|
| 697 |
-
},
|
| 698 |
-
"text/plain": [
|
| 699 |
-
" 0%| | 0/200 [00:00<?, ?it/s]"
|
| 700 |
-
]
|
| 701 |
-
},
|
| 702 |
-
"metadata": {},
|
| 703 |
-
"output_type": "display_data"
|
| 704 |
-
}
|
| 705 |
-
],
|
| 706 |
"source": [
|
| 707 |
"bge = \"local:BAAI/bge-small-en-v1.5\"\n",
|
| 708 |
"bge_val_results = evaluate(val_dataset, bge)"
|
|
@@ -710,7 +407,7 @@
|
|
| 710 |
},
|
| 711 |
{
|
| 712 |
"cell_type": "code",
|
| 713 |
-
"execution_count":
|
| 714 |
"id": "4e66270d-d3f6-429e-9e48-e8062866aa02",
|
| 715 |
"metadata": {},
|
| 716 |
"outputs": [],
|
|
@@ -720,119 +417,20 @@
|
|
| 720 |
},
|
| 721 |
{
|
| 722 |
"cell_type": "code",
|
| 723 |
-
"execution_count":
|
| 724 |
"id": "698c1eb7-eba4-4383-98aa-931fc4ad56a4",
|
| 725 |
"metadata": {},
|
| 726 |
-
"outputs": [
|
| 727 |
-
{
|
| 728 |
-
"data": {
|
| 729 |
-
"text/html": [
|
| 730 |
-
"<div>\n",
|
| 731 |
-
"<style scoped>\n",
|
| 732 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 733 |
-
" vertical-align: middle;\n",
|
| 734 |
-
" }\n",
|
| 735 |
-
"\n",
|
| 736 |
-
" .dataframe tbody tr th {\n",
|
| 737 |
-
" vertical-align: top;\n",
|
| 738 |
-
" }\n",
|
| 739 |
-
"\n",
|
| 740 |
-
" .dataframe thead th {\n",
|
| 741 |
-
" text-align: right;\n",
|
| 742 |
-
" }\n",
|
| 743 |
-
"</style>\n",
|
| 744 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 745 |
-
" <thead>\n",
|
| 746 |
-
" <tr style=\"text-align: right;\">\n",
|
| 747 |
-
" <th></th>\n",
|
| 748 |
-
" <th>is_hit</th>\n",
|
| 749 |
-
" <th>retrieved</th>\n",
|
| 750 |
-
" <th>expected</th>\n",
|
| 751 |
-
" <th>query</th>\n",
|
| 752 |
-
" </tr>\n",
|
| 753 |
-
" </thead>\n",
|
| 754 |
-
" <tbody>\n",
|
| 755 |
-
" <tr>\n",
|
| 756 |
-
" <th>0</th>\n",
|
| 757 |
-
" <td>False</td>\n",
|
| 758 |
-
" <td>[69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7...</td>\n",
|
| 759 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 760 |
-
" <td>011d84b2-0c26-4c5c-89d1-2a85498f30e0</td>\n",
|
| 761 |
-
" </tr>\n",
|
| 762 |
-
" <tr>\n",
|
| 763 |
-
" <th>1</th>\n",
|
| 764 |
-
" <td>True</td>\n",
|
| 765 |
-
" <td>[6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649...</td>\n",
|
| 766 |
-
" <td>6a756f03-638d-480d-8222-1a6bf3790e3c</td>\n",
|
| 767 |
-
" <td>70c5ddd7-eb86-4a41-af70-a23d2392f48d</td>\n",
|
| 768 |
-
" </tr>\n",
|
| 769 |
-
" <tr>\n",
|
| 770 |
-
" <th>2</th>\n",
|
| 771 |
-
" <td>True</td>\n",
|
| 772 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824...</td>\n",
|
| 773 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 774 |
-
" <td>a8f4290a-1281-4272-aab9-bf089954a45e</td>\n",
|
| 775 |
-
" </tr>\n",
|
| 776 |
-
" <tr>\n",
|
| 777 |
-
" <th>3</th>\n",
|
| 778 |
-
" <td>True</td>\n",
|
| 779 |
-
" <td>[c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb...</td>\n",
|
| 780 |
-
" <td>c83dbd8a-7e62-445e-8c12-a8ad604ff65e</td>\n",
|
| 781 |
-
" <td>c1ef991a-1cc6-4dbf-b179-2df688c84301</td>\n",
|
| 782 |
-
" </tr>\n",
|
| 783 |
-
" <tr>\n",
|
| 784 |
-
" <th>4</th>\n",
|
| 785 |
-
" <td>True</td>\n",
|
| 786 |
-
" <td>[21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8...</td>\n",
|
| 787 |
-
" <td>21778248-2ed9-4147-bdb0-a60337a1a599</td>\n",
|
| 788 |
-
" <td>1ce25e78-c1e1-487e-9455-9418baa0b60c</td>\n",
|
| 789 |
-
" </tr>\n",
|
| 790 |
-
" </tbody>\n",
|
| 791 |
-
"</table>\n",
|
| 792 |
-
"</div>"
|
| 793 |
-
],
|
| 794 |
-
"text/plain": [
|
| 795 |
-
" is_hit retrieved \\\n",
|
| 796 |
-
"0 False [69a5696d-0c0e-482a-b6a9-f7b87f19945f, fa650c7... \n",
|
| 797 |
-
"1 True [6a756f03-638d-480d-8222-1a6bf3790e3c, d89a649... \n",
|
| 798 |
-
"2 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, 2177824... \n",
|
| 799 |
-
"3 True [c83dbd8a-7e62-445e-8c12-a8ad604ff65e, ad2e3eb... \n",
|
| 800 |
-
"4 True [21778248-2ed9-4147-bdb0-a60337a1a599, c83dbd8... \n",
|
| 801 |
-
"\n",
|
| 802 |
-
" expected query \n",
|
| 803 |
-
"0 6a756f03-638d-480d-8222-1a6bf3790e3c 011d84b2-0c26-4c5c-89d1-2a85498f30e0 \n",
|
| 804 |
-
"1 6a756f03-638d-480d-8222-1a6bf3790e3c 70c5ddd7-eb86-4a41-af70-a23d2392f48d \n",
|
| 805 |
-
"2 c83dbd8a-7e62-445e-8c12-a8ad604ff65e a8f4290a-1281-4272-aab9-bf089954a45e \n",
|
| 806 |
-
"3 c83dbd8a-7e62-445e-8c12-a8ad604ff65e c1ef991a-1cc6-4dbf-b179-2df688c84301 \n",
|
| 807 |
-
"4 21778248-2ed9-4147-bdb0-a60337a1a599 1ce25e78-c1e1-487e-9455-9418baa0b60c "
|
| 808 |
-
]
|
| 809 |
-
},
|
| 810 |
-
"execution_count": 29,
|
| 811 |
-
"metadata": {},
|
| 812 |
-
"output_type": "execute_result"
|
| 813 |
-
}
|
| 814 |
-
],
|
| 815 |
"source": [
|
| 816 |
"df_bge[:5]"
|
| 817 |
]
|
| 818 |
},
|
| 819 |
{
|
| 820 |
"cell_type": "code",
|
| 821 |
-
"execution_count":
|
| 822 |
"id": "9b1cb546-4605-4c48-bf4e-df812db97f13",
|
| 823 |
"metadata": {},
|
| 824 |
-
"outputs": [
|
| 825 |
-
{
|
| 826 |
-
"data": {
|
| 827 |
-
"text/plain": [
|
| 828 |
-
"(0.915, 200)"
|
| 829 |
-
]
|
| 830 |
-
},
|
| 831 |
-
"execution_count": 30,
|
| 832 |
-
"metadata": {},
|
| 833 |
-
"output_type": "execute_result"
|
| 834 |
-
}
|
| 835 |
-
],
|
| 836 |
"source": [
|
| 837 |
"hit_rate_bge = df_bge[\"is_hit\"].mean()\n",
|
| 838 |
"hit_rate_bge, len(df_bge)"
|
|
@@ -848,21 +446,10 @@
|
|
| 848 |
},
|
| 849 |
{
|
| 850 |
"cell_type": "code",
|
| 851 |
-
"execution_count":
|
| 852 |
"id": "1b12ca3d-6ca2-41f6-9ddb-b12b9354ca83",
|
| 853 |
"metadata": {},
|
| 854 |
-
"outputs": [
|
| 855 |
-
{
|
| 856 |
-
"data": {
|
| 857 |
-
"text/plain": [
|
| 858 |
-
"0.7955697668171072"
|
| 859 |
-
]
|
| 860 |
-
},
|
| 861 |
-
"execution_count": 31,
|
| 862 |
-
"metadata": {},
|
| 863 |
-
"output_type": "execute_result"
|
| 864 |
-
}
|
| 865 |
-
],
|
| 866 |
"source": [
|
| 867 |
"evaluate_st(val_dataset, \"BAAI/bge-small-en-v1.5\", name=\"bge\")"
|
| 868 |
]
|
|
@@ -893,47 +480,18 @@
|
|
| 893 |
},
|
| 894 |
{
|
| 895 |
"cell_type": "code",
|
| 896 |
-
"execution_count":
|
| 897 |
"id": "bd42b288-1f1f-41aa-9fd4-1ae4b1df462b",
|
| 898 |
"metadata": {},
|
| 899 |
-
"outputs": [
|
| 900 |
-
{
|
| 901 |
-
"data": {
|
| 902 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 903 |
-
"model_id": "47dbb97a78c04f7f8fc1264c1013b5ea",
|
| 904 |
-
"version_major": 2,
|
| 905 |
-
"version_minor": 0
|
| 906 |
-
},
|
| 907 |
-
"text/plain": [
|
| 908 |
-
"Generating embeddings: 0%| | 0/100 [00:00<?, ?it/s]"
|
| 909 |
-
]
|
| 910 |
-
},
|
| 911 |
-
"metadata": {},
|
| 912 |
-
"output_type": "display_data"
|
| 913 |
-
},
|
| 914 |
-
{
|
| 915 |
-
"data": {
|
| 916 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 917 |
-
"model_id": "31c9e93debe34cc790bf32e579134a1a",
|
| 918 |
-
"version_major": 2,
|
| 919 |
-
"version_minor": 0
|
| 920 |
-
},
|
| 921 |
-
"text/plain": [
|
| 922 |
-
" 0%| | 0/200 [00:00<?, ?it/s]"
|
| 923 |
-
]
|
| 924 |
-
},
|
| 925 |
-
"metadata": {},
|
| 926 |
-
"output_type": "display_data"
|
| 927 |
-
}
|
| 928 |
-
],
|
| 929 |
"source": [
|
| 930 |
-
"finetuned = \"local
|
| 931 |
"val_results_finetuned = evaluate(val_dataset, finetuned)"
|
| 932 |
]
|
| 933 |
},
|
| 934 |
{
|
| 935 |
"cell_type": "code",
|
| 936 |
-
"execution_count":
|
| 937 |
"id": "b1d7112d-b1b8-47db-8a4b-6c024ef99dd6",
|
| 938 |
"metadata": {},
|
| 939 |
"outputs": [],
|
|
@@ -943,21 +501,10 @@
|
|
| 943 |
},
|
| 944 |
{
|
| 945 |
"cell_type": "code",
|
| 946 |
-
"execution_count":
|
| 947 |
"id": "62a4dd29-0631-4c5b-88e1-be43d48e1043",
|
| 948 |
"metadata": {},
|
| 949 |
-
"outputs": [
|
| 950 |
-
{
|
| 951 |
-
"data": {
|
| 952 |
-
"text/plain": [
|
| 953 |
-
"0.97"
|
| 954 |
-
]
|
| 955 |
-
},
|
| 956 |
-
"execution_count": 34,
|
| 957 |
-
"metadata": {},
|
| 958 |
-
"output_type": "execute_result"
|
| 959 |
-
}
|
| 960 |
-
],
|
| 961 |
"source": [
|
| 962 |
"hit_rate_finetuned = df_finetuned[\"is_hit\"].mean()\n",
|
| 963 |
"hit_rate_finetuned"
|
|
@@ -965,23 +512,12 @@
|
|
| 965 |
},
|
| 966 |
{
|
| 967 |
"cell_type": "code",
|
| 968 |
-
"execution_count":
|
| 969 |
"id": "4332594b-c861-40fb-a58b-ba36717d0519",
|
| 970 |
"metadata": {},
|
| 971 |
-
"outputs": [
|
| 972 |
-
{
|
| 973 |
-
"data": {
|
| 974 |
-
"text/plain": [
|
| 975 |
-
"0.8573385846534823"
|
| 976 |
-
]
|
| 977 |
-
},
|
| 978 |
-
"execution_count": 35,
|
| 979 |
-
"metadata": {},
|
| 980 |
-
"output_type": "execute_result"
|
| 981 |
-
}
|
| 982 |
-
],
|
| 983 |
"source": [
|
| 984 |
-
"evaluate_st(val_dataset, \"
|
| 985 |
]
|
| 986 |
},
|
| 987 |
{
|
|
@@ -1002,7 +538,7 @@
|
|
| 1002 |
},
|
| 1003 |
{
|
| 1004 |
"cell_type": "code",
|
| 1005 |
-
"execution_count":
|
| 1006 |
"id": "3ca46cff-b186-463a-847d-a86c310268ec",
|
| 1007 |
"metadata": {},
|
| 1008 |
"outputs": [],
|
|
@@ -1014,68 +550,10 @@
|
|
| 1014 |
},
|
| 1015 |
{
|
| 1016 |
"cell_type": "code",
|
| 1017 |
-
"execution_count":
|
| 1018 |
"id": "d1d3053e-2395-48a0-af59-fd27180e1e7b",
|
| 1019 |
"metadata": {},
|
| 1020 |
-
"outputs": [
|
| 1021 |
-
{
|
| 1022 |
-
"data": {
|
| 1023 |
-
"text/html": [
|
| 1024 |
-
"<div>\n",
|
| 1025 |
-
"<style scoped>\n",
|
| 1026 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 1027 |
-
" vertical-align: middle;\n",
|
| 1028 |
-
" }\n",
|
| 1029 |
-
"\n",
|
| 1030 |
-
" .dataframe tbody tr th {\n",
|
| 1031 |
-
" vertical-align: top;\n",
|
| 1032 |
-
" }\n",
|
| 1033 |
-
"\n",
|
| 1034 |
-
" .dataframe thead th {\n",
|
| 1035 |
-
" text-align: right;\n",
|
| 1036 |
-
" }\n",
|
| 1037 |
-
"</style>\n",
|
| 1038 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1039 |
-
" <thead>\n",
|
| 1040 |
-
" <tr style=\"text-align: right;\">\n",
|
| 1041 |
-
" <th></th>\n",
|
| 1042 |
-
" <th>is_hit</th>\n",
|
| 1043 |
-
" </tr>\n",
|
| 1044 |
-
" <tr>\n",
|
| 1045 |
-
" <th>model</th>\n",
|
| 1046 |
-
" <th></th>\n",
|
| 1047 |
-
" </tr>\n",
|
| 1048 |
-
" </thead>\n",
|
| 1049 |
-
" <tbody>\n",
|
| 1050 |
-
" <tr>\n",
|
| 1051 |
-
" <th>ada</th>\n",
|
| 1052 |
-
" <td>0.955</td>\n",
|
| 1053 |
-
" </tr>\n",
|
| 1054 |
-
" <tr>\n",
|
| 1055 |
-
" <th>bge</th>\n",
|
| 1056 |
-
" <td>0.915</td>\n",
|
| 1057 |
-
" </tr>\n",
|
| 1058 |
-
" <tr>\n",
|
| 1059 |
-
" <th>fine_tuned</th>\n",
|
| 1060 |
-
" <td>0.970</td>\n",
|
| 1061 |
-
" </tr>\n",
|
| 1062 |
-
" </tbody>\n",
|
| 1063 |
-
"</table>\n",
|
| 1064 |
-
"</div>"
|
| 1065 |
-
],
|
| 1066 |
-
"text/plain": [
|
| 1067 |
-
" is_hit\n",
|
| 1068 |
-
"model \n",
|
| 1069 |
-
"ada 0.955\n",
|
| 1070 |
-
"bge 0.915\n",
|
| 1071 |
-
"fine_tuned 0.970"
|
| 1072 |
-
]
|
| 1073 |
-
},
|
| 1074 |
-
"execution_count": 37,
|
| 1075 |
-
"metadata": {},
|
| 1076 |
-
"output_type": "execute_result"
|
| 1077 |
-
}
|
| 1078 |
-
],
|
| 1079 |
"source": [
|
| 1080 |
"df_all = pd.concat([df_ada, df_bge, df_finetuned])\n",
|
| 1081 |
"df_all.groupby(\"model\").mean(\"is_hit\")"
|
|
@@ -1091,16 +569,16 @@
|
|
| 1091 |
},
|
| 1092 |
{
|
| 1093 |
"cell_type": "code",
|
| 1094 |
-
"execution_count":
|
| 1095 |
"id": "032cac38-c856-4aeb-9bbb-6d70ed53c614",
|
| 1096 |
"metadata": {},
|
| 1097 |
"outputs": [],
|
| 1098 |
"source": [
|
| 1099 |
"df_st_bge = pd.read_csv(\n",
|
| 1100 |
-
" \"results/Information-Retrieval_evaluation_bge_results.csv\"\n",
|
| 1101 |
")\n",
|
| 1102 |
"df_st_finetuned = pd.read_csv(\n",
|
| 1103 |
-
" \"results/Information-Retrieval_evaluation_finetuned_results.csv\"\n",
|
| 1104 |
")"
|
| 1105 |
]
|
| 1106 |
},
|
|
@@ -1114,176 +592,10 @@
|
|
| 1114 |
},
|
| 1115 |
{
|
| 1116 |
"cell_type": "code",
|
| 1117 |
-
"execution_count":
|
| 1118 |
"id": "d2975262-c486-4a9a-a61f-ea535203a0f3",
|
| 1119 |
"metadata": {},
|
| 1120 |
-
"outputs": [
|
| 1121 |
-
{
|
| 1122 |
-
"data": {
|
| 1123 |
-
"text/html": [
|
| 1124 |
-
"<div>\n",
|
| 1125 |
-
"<style scoped>\n",
|
| 1126 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 1127 |
-
" vertical-align: middle;\n",
|
| 1128 |
-
" }\n",
|
| 1129 |
-
"\n",
|
| 1130 |
-
" .dataframe tbody tr th {\n",
|
| 1131 |
-
" vertical-align: top;\n",
|
| 1132 |
-
" }\n",
|
| 1133 |
-
"\n",
|
| 1134 |
-
" .dataframe thead th {\n",
|
| 1135 |
-
" text-align: right;\n",
|
| 1136 |
-
" }\n",
|
| 1137 |
-
"</style>\n",
|
| 1138 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 1139 |
-
" <thead>\n",
|
| 1140 |
-
" <tr style=\"text-align: right;\">\n",
|
| 1141 |
-
" <th></th>\n",
|
| 1142 |
-
" <th>epoch</th>\n",
|
| 1143 |
-
" <th>steps</th>\n",
|
| 1144 |
-
" <th>cos_sim-Accuracy@1</th>\n",
|
| 1145 |
-
" <th>cos_sim-Accuracy@3</th>\n",
|
| 1146 |
-
" <th>cos_sim-Accuracy@5</th>\n",
|
| 1147 |
-
" <th>cos_sim-Accuracy@10</th>\n",
|
| 1148 |
-
" <th>cos_sim-Precision@1</th>\n",
|
| 1149 |
-
" <th>cos_sim-Recall@1</th>\n",
|
| 1150 |
-
" <th>cos_sim-Precision@3</th>\n",
|
| 1151 |
-
" <th>cos_sim-Recall@3</th>\n",
|
| 1152 |
-
" <th>...</th>\n",
|
| 1153 |
-
" <th>dot_score-Recall@1</th>\n",
|
| 1154 |
-
" <th>dot_score-Precision@3</th>\n",
|
| 1155 |
-
" <th>dot_score-Recall@3</th>\n",
|
| 1156 |
-
" <th>dot_score-Precision@5</th>\n",
|
| 1157 |
-
" <th>dot_score-Recall@5</th>\n",
|
| 1158 |
-
" <th>dot_score-Precision@10</th>\n",
|
| 1159 |
-
" <th>dot_score-Recall@10</th>\n",
|
| 1160 |
-
" <th>dot_score-MRR@10</th>\n",
|
| 1161 |
-
" <th>dot_score-NDCG@10</th>\n",
|
| 1162 |
-
" <th>dot_score-MAP@100</th>\n",
|
| 1163 |
-
" </tr>\n",
|
| 1164 |
-
" <tr>\n",
|
| 1165 |
-
" <th>model</th>\n",
|
| 1166 |
-
" <th></th>\n",
|
| 1167 |
-
" <th></th>\n",
|
| 1168 |
-
" <th></th>\n",
|
| 1169 |
-
" <th></th>\n",
|
| 1170 |
-
" <th></th>\n",
|
| 1171 |
-
" <th></th>\n",
|
| 1172 |
-
" <th></th>\n",
|
| 1173 |
-
" <th></th>\n",
|
| 1174 |
-
" <th></th>\n",
|
| 1175 |
-
" <th></th>\n",
|
| 1176 |
-
" <th></th>\n",
|
| 1177 |
-
" <th></th>\n",
|
| 1178 |
-
" <th></th>\n",
|
| 1179 |
-
" <th></th>\n",
|
| 1180 |
-
" <th></th>\n",
|
| 1181 |
-
" <th></th>\n",
|
| 1182 |
-
" <th></th>\n",
|
| 1183 |
-
" <th></th>\n",
|
| 1184 |
-
" <th></th>\n",
|
| 1185 |
-
" <th></th>\n",
|
| 1186 |
-
" <th></th>\n",
|
| 1187 |
-
" </tr>\n",
|
| 1188 |
-
" </thead>\n",
|
| 1189 |
-
" <tbody>\n",
|
| 1190 |
-
" <tr>\n",
|
| 1191 |
-
" <th>bge</th>\n",
|
| 1192 |
-
" <td>-1</td>\n",
|
| 1193 |
-
" <td>-1</td>\n",
|
| 1194 |
-
" <td>0.705</td>\n",
|
| 1195 |
-
" <td>0.865</td>\n",
|
| 1196 |
-
" <td>0.92</td>\n",
|
| 1197 |
-
" <td>0.96</td>\n",
|
| 1198 |
-
" <td>0.705</td>\n",
|
| 1199 |
-
" <td>0.705</td>\n",
|
| 1200 |
-
" <td>0.288333</td>\n",
|
| 1201 |
-
" <td>0.865</td>\n",
|
| 1202 |
-
" <td>...</td>\n",
|
| 1203 |
-
" <td>0.705</td>\n",
|
| 1204 |
-
" <td>0.288333</td>\n",
|
| 1205 |
-
" <td>0.865</td>\n",
|
| 1206 |
-
" <td>0.184</td>\n",
|
| 1207 |
-
" <td>0.92</td>\n",
|
| 1208 |
-
" <td>0.096</td>\n",
|
| 1209 |
-
" <td>0.96</td>\n",
|
| 1210 |
-
" <td>0.792935</td>\n",
|
| 1211 |
-
" <td>0.833595</td>\n",
|
| 1212 |
-
" <td>0.795570</td>\n",
|
| 1213 |
-
" </tr>\n",
|
| 1214 |
-
" <tr>\n",
|
| 1215 |
-
" <th>fine_tuned</th>\n",
|
| 1216 |
-
" <td>-1</td>\n",
|
| 1217 |
-
" <td>-1</td>\n",
|
| 1218 |
-
" <td>0.790</td>\n",
|
| 1219 |
-
" <td>0.900</td>\n",
|
| 1220 |
-
" <td>0.97</td>\n",
|
| 1221 |
-
" <td>0.98</td>\n",
|
| 1222 |
-
" <td>0.790</td>\n",
|
| 1223 |
-
" <td>0.790</td>\n",
|
| 1224 |
-
" <td>0.300000</td>\n",
|
| 1225 |
-
" <td>0.900</td>\n",
|
| 1226 |
-
" <td>...</td>\n",
|
| 1227 |
-
" <td>0.790</td>\n",
|
| 1228 |
-
" <td>0.300000</td>\n",
|
| 1229 |
-
" <td>0.900</td>\n",
|
| 1230 |
-
" <td>0.194</td>\n",
|
| 1231 |
-
" <td>0.97</td>\n",
|
| 1232 |
-
" <td>0.098</td>\n",
|
| 1233 |
-
" <td>0.98</td>\n",
|
| 1234 |
-
" <td>0.856264</td>\n",
|
| 1235 |
-
" <td>0.886738</td>\n",
|
| 1236 |
-
" <td>0.857339</td>\n",
|
| 1237 |
-
" </tr>\n",
|
| 1238 |
-
" </tbody>\n",
|
| 1239 |
-
"</table>\n",
|
| 1240 |
-
"<p>2 rows × 32 columns</p>\n",
|
| 1241 |
-
"</div>"
|
| 1242 |
-
],
|
| 1243 |
-
"text/plain": [
|
| 1244 |
-
" epoch steps cos_sim-Accuracy@1 cos_sim-Accuracy@3 \\\n",
|
| 1245 |
-
"model \n",
|
| 1246 |
-
"bge -1 -1 0.705 0.865 \n",
|
| 1247 |
-
"fine_tuned -1 -1 0.790 0.900 \n",
|
| 1248 |
-
"\n",
|
| 1249 |
-
" cos_sim-Accuracy@5 cos_sim-Accuracy@10 cos_sim-Precision@1 \\\n",
|
| 1250 |
-
"model \n",
|
| 1251 |
-
"bge 0.92 0.96 0.705 \n",
|
| 1252 |
-
"fine_tuned 0.97 0.98 0.790 \n",
|
| 1253 |
-
"\n",
|
| 1254 |
-
" cos_sim-Recall@1 cos_sim-Precision@3 cos_sim-Recall@3 ... \\\n",
|
| 1255 |
-
"model ... \n",
|
| 1256 |
-
"bge 0.705 0.288333 0.865 ... \n",
|
| 1257 |
-
"fine_tuned 0.790 0.300000 0.900 ... \n",
|
| 1258 |
-
"\n",
|
| 1259 |
-
" dot_score-Recall@1 dot_score-Precision@3 dot_score-Recall@3 \\\n",
|
| 1260 |
-
"model \n",
|
| 1261 |
-
"bge 0.705 0.288333 0.865 \n",
|
| 1262 |
-
"fine_tuned 0.790 0.300000 0.900 \n",
|
| 1263 |
-
"\n",
|
| 1264 |
-
" dot_score-Precision@5 dot_score-Recall@5 dot_score-Precision@10 \\\n",
|
| 1265 |
-
"model \n",
|
| 1266 |
-
"bge 0.184 0.92 0.096 \n",
|
| 1267 |
-
"fine_tuned 0.194 0.97 0.098 \n",
|
| 1268 |
-
"\n",
|
| 1269 |
-
" dot_score-Recall@10 dot_score-MRR@10 dot_score-NDCG@10 \\\n",
|
| 1270 |
-
"model \n",
|
| 1271 |
-
"bge 0.96 0.792935 0.833595 \n",
|
| 1272 |
-
"fine_tuned 0.98 0.856264 0.886738 \n",
|
| 1273 |
-
"\n",
|
| 1274 |
-
" dot_score-MAP@100 \n",
|
| 1275 |
-
"model \n",
|
| 1276 |
-
"bge 0.795570 \n",
|
| 1277 |
-
"fine_tuned 0.857339 \n",
|
| 1278 |
-
"\n",
|
| 1279 |
-
"[2 rows x 32 columns]"
|
| 1280 |
-
]
|
| 1281 |
-
},
|
| 1282 |
-
"execution_count": 39,
|
| 1283 |
-
"metadata": {},
|
| 1284 |
-
"output_type": "execute_result"
|
| 1285 |
-
}
|
| 1286 |
-
],
|
| 1287 |
"source": [
|
| 1288 |
"df_st_bge[\"model\"] = \"bge\"\n",
|
| 1289 |
"df_st_finetuned[\"model\"] = \"fine_tuned\"\n",
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
"id": "ca2c990f-5215-4ab9-8143-1d79db28edc6",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
|
|
| 16 |
},
|
| 17 |
{
|
| 18 |
"cell_type": "code",
|
| 19 |
+
"execution_count": null,
|
| 20 |
"id": "2c535ad7-7846-4bef-8ba8-33e182490c3d",
|
| 21 |
"metadata": {},
|
| 22 |
"outputs": [],
|
|
|
|
| 30 |
},
|
| 31 |
{
|
| 32 |
"cell_type": "code",
|
| 33 |
+
"execution_count": null,
|
| 34 |
"id": "25f0c7a3-c52f-4417-aec8-4b6cfbf7a1b5",
|
| 35 |
"metadata": {},
|
| 36 |
"outputs": [],
|
|
|
|
| 44 |
},
|
| 45 |
{
|
| 46 |
"cell_type": "code",
|
| 47 |
+
"execution_count": null,
|
| 48 |
"id": "62f4d7f0-748a-405e-b5f1-6520fd02bedc",
|
| 49 |
"metadata": {},
|
| 50 |
"outputs": [],
|
|
|
|
| 56 |
},
|
| 57 |
{
|
| 58 |
"cell_type": "code",
|
| 59 |
+
"execution_count": null,
|
| 60 |
"id": "12527049-a5cb-423c-8de5-099aee970c85",
|
| 61 |
"metadata": {},
|
| 62 |
"outputs": [],
|
|
|
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
"id": "abde5e6c-3474-460c-9fac-4f3352c38b53",
|
| 71 |
"metadata": {},
|
| 72 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
"source": [
|
| 74 |
"import llama_index\n",
|
| 75 |
"print(llama_index.__version__)"
|
|
|
|
| 85 |
},
|
| 86 |
{
|
| 87 |
"cell_type": "code",
|
| 88 |
+
"execution_count": null,
|
| 89 |
"id": "978cf71f-1ce7-4598-92fe-18fe22ca37c6",
|
| 90 |
"metadata": {},
|
| 91 |
"outputs": [],
|
|
|
|
| 107 |
},
|
| 108 |
{
|
| 109 |
"cell_type": "code",
|
| 110 |
+
"execution_count": null,
|
| 111 |
"id": "26f614c8-eb45-4cc1-b067-2c7299587982",
|
| 112 |
"metadata": {},
|
| 113 |
"outputs": [],
|
|
|
|
| 140 |
},
|
| 141 |
{
|
| 142 |
"cell_type": "code",
|
| 143 |
+
"execution_count": null,
|
| 144 |
"id": "84cc4308-8ac4-4eba-9478-b81d5b645c48",
|
| 145 |
"metadata": {},
|
| 146 |
"outputs": [],
|
|
|
|
| 176 |
},
|
| 177 |
{
|
| 178 |
"cell_type": "code",
|
| 179 |
+
"execution_count": null,
|
| 180 |
"id": "8f17c832-e9ae-477b-8bf7-a9c8410f1ed8",
|
| 181 |
"metadata": {},
|
| 182 |
"outputs": [],
|
|
|
|
| 184 |
"finetune_engine = SentenceTransformersFinetuneEngine(\n",
|
| 185 |
" train_dataset,\n",
|
| 186 |
" model_id=\"BAAI/bge-small-en-v1.5\",\n",
|
| 187 |
+
" model_output_path=\"../models/fine-tuned-embeddings\",\n",
|
| 188 |
" batch_size=5,\n",
|
| 189 |
" val_dataset=val_dataset\n",
|
| 190 |
")"
|
|
|
|
| 192 |
},
|
| 193 |
{
|
| 194 |
"cell_type": "code",
|
| 195 |
+
"execution_count": null,
|
| 196 |
"id": "a6498d0b-da9a-4f7f-8c85-c9bf4d772c72",
|
| 197 |
"metadata": {},
|
| 198 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
"source": [
|
| 200 |
"finetune_engine.finetune()"
|
| 201 |
]
|
| 202 |
},
|
| 203 |
{
|
| 204 |
"cell_type": "code",
|
| 205 |
+
"execution_count": null,
|
| 206 |
"id": "e057b405-aa0e-4e78-91e0-9bf40f01c1a9",
|
| 207 |
"metadata": {},
|
| 208 |
"outputs": [],
|
|
|
|
| 212 |
},
|
| 213 |
{
|
| 214 |
"cell_type": "code",
|
| 215 |
+
"execution_count": null,
|
| 216 |
"id": "72d9f97a-0902-4e65-8459-b34613e419f6",
|
| 217 |
"metadata": {},
|
| 218 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
"source": [
|
| 220 |
"embed_model"
|
| 221 |
]
|
|
|
|
| 223 |
{
|
| 224 |
"cell_type": "code",
|
| 225 |
"execution_count": null,
|
| 226 |
+
"id": "c4f4058c-edbb-43c4-bebe-8c36d410e819",
|
| 227 |
"metadata": {},
|
| 228 |
"outputs": [],
|
| 229 |
"source": []
|
| 230 |
},
|
| 231 |
+
{
|
| 232 |
+
"cell_type": "code",
|
| 233 |
+
"execution_count": null,
|
| 234 |
+
"id": "97ebae28-80ef-4f35-92ce-a370776e3b22",
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"outputs": [],
|
| 237 |
+
"source": [
|
| 238 |
+
"fine_tuned_embed_model = SentenceTransformer(\"../models/fine-tuned-embeddings\")"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
{
|
| 242 |
"cell_type": "code",
|
| 243 |
"execution_count": null,
|
|
|
|
| 248 |
},
|
| 249 |
{
|
| 250 |
"cell_type": "code",
|
| 251 |
+
"execution_count": null,
|
| 252 |
"id": "ac4a1a5b-974d-452e-8507-0950c962f9b2",
|
| 253 |
"metadata": {},
|
| 254 |
"outputs": [],
|
|
|
|
| 289 |
},
|
| 290 |
{
|
| 291 |
"cell_type": "code",
|
| 292 |
+
"execution_count": null,
|
| 293 |
"id": "a53cf893-ce9f-4d9d-ad4a-e9e17fb058d3",
|
| 294 |
"metadata": {},
|
| 295 |
"outputs": [],
|
|
|
|
| 307 |
" queries, corpus, relevant_docs, name=name\n",
|
| 308 |
" )\n",
|
| 309 |
" model = SentenceTransformer(model_id)\n",
|
| 310 |
+
" output_path = \"../results/\"\n",
|
| 311 |
" Path(output_path).mkdir(exist_ok=True, parents=True)\n",
|
| 312 |
" return evaluator(model, output_path=output_path)"
|
| 313 |
]
|
|
|
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"cell_type": "code",
|
| 341 |
+
"execution_count": null,
|
| 342 |
"id": "91f057aa-4b59-48ea-b3d5-23012a4d487f",
|
| 343 |
"metadata": {},
|
| 344 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
"source": [
|
| 346 |
"ada = OpenAIEmbedding()\n",
|
| 347 |
"ada_val_results = evaluate(val_dataset, ada)"
|
|
|
|
| 349 |
},
|
| 350 |
{
|
| 351 |
"cell_type": "code",
|
| 352 |
+
"execution_count": null,
|
| 353 |
"id": "5d2f59c6-75d3-4970-bac3-dfe0eef00efe",
|
| 354 |
"metadata": {},
|
| 355 |
"outputs": [],
|
|
|
|
| 359 |
},
|
| 360 |
{
|
| 361 |
"cell_type": "code",
|
| 362 |
+
"execution_count": null,
|
| 363 |
"id": "7a697cd8-6f39-4d5b-84f4-f08cf58adc4a",
|
| 364 |
"metadata": {},
|
| 365 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
"source": [
|
| 367 |
"df_ada[:5]"
|
| 368 |
]
|
| 369 |
},
|
| 370 |
{
|
| 371 |
"cell_type": "code",
|
| 372 |
+
"execution_count": null,
|
| 373 |
"id": "3f7186fb-f392-4531-8959-25161e3905e4",
|
| 374 |
"metadata": {},
|
| 375 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
"source": [
|
| 377 |
"hit_rate_ada = df_ada[\"is_hit\"].mean()\n",
|
| 378 |
"hit_rate_ada, len(df_ada)"
|
|
|
|
| 396 |
},
|
| 397 |
{
|
| 398 |
"cell_type": "code",
|
| 399 |
+
"execution_count": null,
|
| 400 |
"id": "b2905831-0eb9-4ea7-a0b9-5db286b0965e",
|
| 401 |
"metadata": {},
|
| 402 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
"source": [
|
| 404 |
"bge = \"local:BAAI/bge-small-en-v1.5\"\n",
|
| 405 |
"bge_val_results = evaluate(val_dataset, bge)"
|
|
|
|
| 407 |
},
|
| 408 |
{
|
| 409 |
"cell_type": "code",
|
| 410 |
+
"execution_count": null,
|
| 411 |
"id": "4e66270d-d3f6-429e-9e48-e8062866aa02",
|
| 412 |
"metadata": {},
|
| 413 |
"outputs": [],
|
|
|
|
| 417 |
},
|
| 418 |
{
|
| 419 |
"cell_type": "code",
|
| 420 |
+
"execution_count": null,
|
| 421 |
"id": "698c1eb7-eba4-4383-98aa-931fc4ad56a4",
|
| 422 |
"metadata": {},
|
| 423 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
"source": [
|
| 425 |
"df_bge[:5]"
|
| 426 |
]
|
| 427 |
},
|
| 428 |
{
|
| 429 |
"cell_type": "code",
|
| 430 |
+
"execution_count": null,
|
| 431 |
"id": "9b1cb546-4605-4c48-bf4e-df812db97f13",
|
| 432 |
"metadata": {},
|
| 433 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 434 |
"source": [
|
| 435 |
"hit_rate_bge = df_bge[\"is_hit\"].mean()\n",
|
| 436 |
"hit_rate_bge, len(df_bge)"
|
|
|
|
| 446 |
},
|
| 447 |
{
|
| 448 |
"cell_type": "code",
|
| 449 |
+
"execution_count": null,
|
| 450 |
"id": "1b12ca3d-6ca2-41f6-9ddb-b12b9354ca83",
|
| 451 |
"metadata": {},
|
| 452 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
"source": [
|
| 454 |
"evaluate_st(val_dataset, \"BAAI/bge-small-en-v1.5\", name=\"bge\")"
|
| 455 |
]
|
|
|
|
| 480 |
},
|
| 481 |
{
|
| 482 |
"cell_type": "code",
|
| 483 |
+
"execution_count": null,
|
| 484 |
"id": "bd42b288-1f1f-41aa-9fd4-1ae4b1df462b",
|
| 485 |
"metadata": {},
|
| 486 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
"source": [
|
| 488 |
+
"finetuned = \"local:../models/fine-tuned-embeddings\"\n",
|
| 489 |
"val_results_finetuned = evaluate(val_dataset, finetuned)"
|
| 490 |
]
|
| 491 |
},
|
| 492 |
{
|
| 493 |
"cell_type": "code",
|
| 494 |
+
"execution_count": null,
|
| 495 |
"id": "b1d7112d-b1b8-47db-8a4b-6c024ef99dd6",
|
| 496 |
"metadata": {},
|
| 497 |
"outputs": [],
|
|
|
|
| 501 |
},
|
| 502 |
{
|
| 503 |
"cell_type": "code",
|
| 504 |
+
"execution_count": null,
|
| 505 |
"id": "62a4dd29-0631-4c5b-88e1-be43d48e1043",
|
| 506 |
"metadata": {},
|
| 507 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
"source": [
|
| 509 |
"hit_rate_finetuned = df_finetuned[\"is_hit\"].mean()\n",
|
| 510 |
"hit_rate_finetuned"
|
|
|
|
| 512 |
},
|
| 513 |
{
|
| 514 |
"cell_type": "code",
|
| 515 |
+
"execution_count": null,
|
| 516 |
"id": "4332594b-c861-40fb-a58b-ba36717d0519",
|
| 517 |
"metadata": {},
|
| 518 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
"source": [
|
| 520 |
+
"evaluate_st(val_dataset, \"../models/fine-tuned-embeddings\", name=\"finetuned\")"
|
| 521 |
]
|
| 522 |
},
|
| 523 |
{
|
|
|
|
| 538 |
},
|
| 539 |
{
|
| 540 |
"cell_type": "code",
|
| 541 |
+
"execution_count": null,
|
| 542 |
"id": "3ca46cff-b186-463a-847d-a86c310268ec",
|
| 543 |
"metadata": {},
|
| 544 |
"outputs": [],
|
|
|
|
| 550 |
},
|
| 551 |
{
|
| 552 |
"cell_type": "code",
|
| 553 |
+
"execution_count": null,
|
| 554 |
"id": "d1d3053e-2395-48a0-af59-fd27180e1e7b",
|
| 555 |
"metadata": {},
|
| 556 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
"source": [
|
| 558 |
"df_all = pd.concat([df_ada, df_bge, df_finetuned])\n",
|
| 559 |
"df_all.groupby(\"model\").mean(\"is_hit\")"
|
|
|
|
| 569 |
},
|
| 570 |
{
|
| 571 |
"cell_type": "code",
|
| 572 |
+
"execution_count": null,
|
| 573 |
"id": "032cac38-c856-4aeb-9bbb-6d70ed53c614",
|
| 574 |
"metadata": {},
|
| 575 |
"outputs": [],
|
| 576 |
"source": [
|
| 577 |
"df_st_bge = pd.read_csv(\n",
|
| 578 |
+
" \"../results/Information-Retrieval_evaluation_bge_results.csv\"\n",
|
| 579 |
")\n",
|
| 580 |
"df_st_finetuned = pd.read_csv(\n",
|
| 581 |
+
" \"../results/Information-Retrieval_evaluation_finetuned_results.csv\"\n",
|
| 582 |
")"
|
| 583 |
]
|
| 584 |
},
|
|
|
|
| 592 |
},
|
| 593 |
{
|
| 594 |
"cell_type": "code",
|
| 595 |
+
"execution_count": null,
|
| 596 |
"id": "d2975262-c486-4a9a-a61f-ea535203a0f3",
|
| 597 |
"metadata": {},
|
| 598 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
"source": [
|
| 600 |
"df_st_bge[\"model\"] = \"bge\"\n",
|
| 601 |
"df_st_finetuned[\"model\"] = \"fine_tuned\"\n",
|
notebooks/persisted-embedding-model.ipynb
CHANGED
|
@@ -483,7 +483,7 @@
|
|
| 483 |
},
|
| 484 |
"outputs": [],
|
| 485 |
"source": [
|
| 486 |
-
"r_list[
|
| 487 |
]
|
| 488 |
},
|
| 489 |
{
|
|
@@ -551,6 +551,18 @@
|
|
| 551 |
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
| 552 |
]
|
| 553 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 554 |
{
|
| 555 |
"cell_type": "code",
|
| 556 |
"execution_count": null,
|
|
@@ -614,6 +626,41 @@
|
|
| 614 |
")"
|
| 615 |
]
|
| 616 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 617 |
{
|
| 618 |
"cell_type": "code",
|
| 619 |
"execution_count": null,
|
|
@@ -653,6 +700,182 @@
|
|
| 653 |
"metadata": {},
|
| 654 |
"outputs": [],
|
| 655 |
"source": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
}
|
| 657 |
],
|
| 658 |
"metadata": {
|
|
|
|
| 483 |
},
|
| 484 |
"outputs": [],
|
| 485 |
"source": [
|
| 486 |
+
"r_list[0].to_dict()"
|
| 487 |
]
|
| 488 |
},
|
| 489 |
{
|
|
|
|
| 551 |
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
| 552 |
]
|
| 553 |
},
|
| 554 |
+
{
|
| 555 |
+
"cell_type": "code",
|
| 556 |
+
"execution_count": null,
|
| 557 |
+
"id": "6c98a573-b401-4191-99c0-1216833bb566",
|
| 558 |
+
"metadata": {},
|
| 559 |
+
"outputs": [],
|
| 560 |
+
"source": [
|
| 561 |
+
"from llama_index.llms import OpenAI\n",
|
| 562 |
+
"from llama_index.memory import ChatMemoryBuffer\n",
|
| 563 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0.0)"
|
| 564 |
+
]
|
| 565 |
+
},
|
| 566 |
{
|
| 567 |
"cell_type": "code",
|
| 568 |
"execution_count": null,
|
|
|
|
| 626 |
")"
|
| 627 |
]
|
| 628 |
},
|
| 629 |
+
{
|
| 630 |
+
"cell_type": "code",
|
| 631 |
+
"execution_count": null,
|
| 632 |
+
"id": "73ba6d06-ba69-4b5e-962a-9cf7d2dc4d94",
|
| 633 |
+
"metadata": {},
|
| 634 |
+
"outputs": [],
|
| 635 |
+
"source": []
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"cell_type": "code",
|
| 639 |
+
"execution_count": null,
|
| 640 |
+
"id": "ab778a5d-d438-4f39-88f5-c67a1f1d575e",
|
| 641 |
+
"metadata": {},
|
| 642 |
+
"outputs": [],
|
| 643 |
+
"source": [
|
| 644 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
| 645 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
| 646 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
| 647 |
+
")\n",
|
| 648 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)\n",
|
| 649 |
+
"chat_engine = index.as_chat_engine(\n",
|
| 650 |
+
" chat_mode=\"context\",\n",
|
| 651 |
+
" memory=memory,\n",
|
| 652 |
+
" system_prompt=system_content\n",
|
| 653 |
+
")"
|
| 654 |
+
]
|
| 655 |
+
},
|
| 656 |
+
{
|
| 657 |
+
"cell_type": "code",
|
| 658 |
+
"execution_count": null,
|
| 659 |
+
"id": "8d6de457-43b5-4ea7-b5e3-150abe918671",
|
| 660 |
+
"metadata": {},
|
| 661 |
+
"outputs": [],
|
| 662 |
+
"source": []
|
| 663 |
+
},
|
| 664 |
{
|
| 665 |
"cell_type": "code",
|
| 666 |
"execution_count": null,
|
|
|
|
| 700 |
"metadata": {},
|
| 701 |
"outputs": [],
|
| 702 |
"source": []
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"cell_type": "code",
|
| 706 |
+
"execution_count": null,
|
| 707 |
+
"id": "301e8270-783d-4942-a05f-9683ca96fbda",
|
| 708 |
+
"metadata": {},
|
| 709 |
+
"outputs": [],
|
| 710 |
+
"source": []
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"cell_type": "markdown",
|
| 714 |
+
"id": "506672cc-f447-414d-9c57-cd62a964dea8",
|
| 715 |
+
"metadata": {},
|
| 716 |
+
"source": [
|
| 717 |
+
"### ChromaDB method - load vectorstore with LLM"
|
| 718 |
+
]
|
| 719 |
+
},
|
| 720 |
+
{
|
| 721 |
+
"cell_type": "code",
|
| 722 |
+
"execution_count": null,
|
| 723 |
+
"id": "d9c4a50e-915c-492d-be69-e4ebfd16744a",
|
| 724 |
+
"metadata": {},
|
| 725 |
+
"outputs": [],
|
| 726 |
+
"source": [
|
| 727 |
+
"import chromadb\n",
|
| 728 |
+
"from llama_index import VectorStoreIndex, SimpleDirectoryReader\n",
|
| 729 |
+
"from llama_index.vector_stores import ChromaVectorStore\n",
|
| 730 |
+
"from llama_index.storage.storage_context import StorageContext\n",
|
| 731 |
+
"from llama_index import ServiceContext\n",
|
| 732 |
+
"from llama_index import Document\n",
|
| 733 |
+
"\n",
|
| 734 |
+
"from llama_index.embeddings import HuggingFaceEmbedding\n",
|
| 735 |
+
"\n",
|
| 736 |
+
"import time"
|
| 737 |
+
]
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"cell_type": "code",
|
| 741 |
+
"execution_count": null,
|
| 742 |
+
"id": "97680b61-d87a-426d-9177-3670688e8e0c",
|
| 743 |
+
"metadata": {},
|
| 744 |
+
"outputs": [],
|
| 745 |
+
"source": [
|
| 746 |
+
"embed_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")"
|
| 747 |
+
]
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"cell_type": "code",
|
| 751 |
+
"execution_count": null,
|
| 752 |
+
"id": "808fa41d-2b3f-40ab-8cd3-01565b6d6e35",
|
| 753 |
+
"metadata": {},
|
| 754 |
+
"outputs": [],
|
| 755 |
+
"source": [
|
| 756 |
+
"from llama_index.llms import OpenAI\n",
|
| 757 |
+
"from llama_index.memory import ChatMemoryBuffer\n",
|
| 758 |
+
"llm = OpenAI(model=\"gpt-3.5-turbo-1106\", temperature=0.0)"
|
| 759 |
+
]
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"cell_type": "code",
|
| 763 |
+
"execution_count": null,
|
| 764 |
+
"id": "497b02bd-3ec7-4a4e-8af9-6417437a4bce",
|
| 765 |
+
"metadata": {},
|
| 766 |
+
"outputs": [],
|
| 767 |
+
"source": [
|
| 768 |
+
"service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)"
|
| 769 |
+
]
|
| 770 |
+
},
|
| 771 |
+
{
|
| 772 |
+
"cell_type": "code",
|
| 773 |
+
"execution_count": null,
|
| 774 |
+
"id": "51d64b76-628e-418c-b394-807ea9cafd6c",
|
| 775 |
+
"metadata": {},
|
| 776 |
+
"outputs": [],
|
| 777 |
+
"source": []
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"cell_type": "code",
|
| 781 |
+
"execution_count": null,
|
| 782 |
+
"id": "c0b28d70-c43d-4542-9e1b-4ce29a60f9d3",
|
| 783 |
+
"metadata": {},
|
| 784 |
+
"outputs": [],
|
| 785 |
+
"source": [
|
| 786 |
+
"db = chromadb.PersistentClient(path=\"../models/chroma_db\")"
|
| 787 |
+
]
|
| 788 |
+
},
|
| 789 |
+
{
|
| 790 |
+
"cell_type": "code",
|
| 791 |
+
"execution_count": null,
|
| 792 |
+
"id": "6f1d4e93-0d74-456a-9c1d-938405a8ec9a",
|
| 793 |
+
"metadata": {},
|
| 794 |
+
"outputs": [],
|
| 795 |
+
"source": [
|
| 796 |
+
"chroma_collection = db.get_or_create_collection(\"quickstart\")"
|
| 797 |
+
]
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"cell_type": "code",
|
| 801 |
+
"execution_count": null,
|
| 802 |
+
"id": "da0dd3b7-d798-4c0f-b735-cf1e67094c46",
|
| 803 |
+
"metadata": {},
|
| 804 |
+
"outputs": [],
|
| 805 |
+
"source": [
|
| 806 |
+
"# assign chroma as the vector_store to the context\n",
|
| 807 |
+
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
|
| 808 |
+
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
|
| 809 |
+
]
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"cell_type": "code",
|
| 813 |
+
"execution_count": null,
|
| 814 |
+
"id": "0d62e372-8a33-4609-9ac4-fee3cbc4e8a9",
|
| 815 |
+
"metadata": {},
|
| 816 |
+
"outputs": [],
|
| 817 |
+
"source": [
|
| 818 |
+
"# create your index\n",
|
| 819 |
+
"index = VectorStoreIndex.from_vector_store(\n",
|
| 820 |
+
" vector_store=vector_store, service_context=service_context, storage_context=storage_context\n",
|
| 821 |
+
")"
|
| 822 |
+
]
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"cell_type": "code",
|
| 826 |
+
"execution_count": null,
|
| 827 |
+
"id": "26dedd3b-44f3-4a67-865a-693cd6d0a9ea",
|
| 828 |
+
"metadata": {},
|
| 829 |
+
"outputs": [],
|
| 830 |
+
"source": [
|
| 831 |
+
"system_content = (\"You are a helpful study assistant. \"\n",
|
| 832 |
+
" \"You do not respond as 'User' or pretend to be 'User'. \"\n",
|
| 833 |
+
" \"You only respond once as 'Assistant'.\"\n",
|
| 834 |
+
")\n",
|
| 835 |
+
"memory = ChatMemoryBuffer.from_defaults(token_limit=15000)\n",
|
| 836 |
+
"chat_engine = index.as_chat_engine(\n",
|
| 837 |
+
" chat_mode=\"context\",\n",
|
| 838 |
+
" memory=memory,\n",
|
| 839 |
+
" system_prompt=system_content\n",
|
| 840 |
+
")"
|
| 841 |
+
]
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"cell_type": "code",
|
| 845 |
+
"execution_count": null,
|
| 846 |
+
"id": "9e3da625-283a-4d57-a449-d5aa17d0c188",
|
| 847 |
+
"metadata": {},
|
| 848 |
+
"outputs": [],
|
| 849 |
+
"source": [
|
| 850 |
+
"response = chat_engine.stream_chat(\"are you there?\")"
|
| 851 |
+
]
|
| 852 |
+
},
|
| 853 |
+
{
|
| 854 |
+
"cell_type": "code",
|
| 855 |
+
"execution_count": null,
|
| 856 |
+
"id": "62ed7a14-261f-4c68-8578-5dfb74bcfc58",
|
| 857 |
+
"metadata": {},
|
| 858 |
+
"outputs": [],
|
| 859 |
+
"source": [
|
| 860 |
+
"for r in response.response_gen:\n",
|
| 861 |
+
" print(r, end=\"\")"
|
| 862 |
+
]
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"cell_type": "code",
|
| 866 |
+
"execution_count": null,
|
| 867 |
+
"id": "1d4ba65c-3135-4b96-a342-c5546949cb72",
|
| 868 |
+
"metadata": {},
|
| 869 |
+
"outputs": [],
|
| 870 |
+
"source": []
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"cell_type": "code",
|
| 874 |
+
"execution_count": null,
|
| 875 |
+
"id": "9ca2555f-6975-4bc1-b804-c0c9beb2a515",
|
| 876 |
+
"metadata": {},
|
| 877 |
+
"outputs": [],
|
| 878 |
+
"source": []
|
| 879 |
}
|
| 880 |
],
|
| 881 |
"metadata": {
|
notebooks/qna_prompting_with_function_calling.ipynb
ADDED
|
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "9e975979-3b3d-4a8d-9db6-b7433cf0d8b4",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import os, random, json\n",
|
| 11 |
+
"import sqlite3\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"import pandas as pd\n",
|
| 14 |
+
"from openai import OpenAI"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": null,
|
| 20 |
+
"id": "98601634-bd9b-4566-b242-2b3c9d04b260",
|
| 21 |
+
"metadata": {},
|
| 22 |
+
"outputs": [],
|
| 23 |
+
"source": []
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "markdown",
|
| 27 |
+
"id": "63db76a8-31de-4957-b7b9-291c2539f976",
|
| 28 |
+
"metadata": {},
|
| 29 |
+
"source": [
|
| 30 |
+
"### Parameters"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"id": "ff4d40aa-a42e-4ad7-9ca9-d894653d205e",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [],
|
| 39 |
+
"source": [
|
| 40 |
+
"db_path = \"../database/mock_qna.db\""
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"execution_count": null,
|
| 46 |
+
"id": "98a20c7e-b1dc-42d5-929b-62978959abda",
|
| 47 |
+
"metadata": {},
|
| 48 |
+
"outputs": [],
|
| 49 |
+
"source": []
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": null,
|
| 54 |
+
"id": "a11295d9-9bf0-4c9d-b5b2-0feec01bf640",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"con = sqlite3.connect(db_path)"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"execution_count": null,
|
| 64 |
+
"id": "a1c1e976-0d75-42e3-8c2e-5045ee0f2c4a",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"outputs": [],
|
| 67 |
+
"source": [
|
| 68 |
+
"cur = con.cursor()"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": null,
|
| 74 |
+
"id": "d78b0cc7-0238-41be-bc9f-688fcac71f73",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"outputs": [],
|
| 77 |
+
"source": [
|
| 78 |
+
"res = cur.execute(f\"\"\"SELECT COUNT(*)\n",
|
| 79 |
+
" FROM qna_tbl\n",
|
| 80 |
+
" \"\"\")\n",
|
| 81 |
+
"table_size = res.fetchone()[0]\n",
|
| 82 |
+
"print(f\"table size: {table_size}\")"
|
| 83 |
+
]
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"cell_type": "code",
|
| 87 |
+
"execution_count": null,
|
| 88 |
+
"id": "faaacff0-bc67-464d-bd7c-1d51b0901dd4",
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"outputs": [],
|
| 91 |
+
"source": [
|
| 92 |
+
"res = cur.execute(f\"\"\"SELECT chapter, COUNT(*)\n",
|
| 93 |
+
" FROM qna_tbl\n",
|
| 94 |
+
" GROUP BY chapter\n",
|
| 95 |
+
" \"\"\")\n",
|
| 96 |
+
"chapter_counts = res.fetchall()\n",
|
| 97 |
+
"print(chapter_counts)"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "code",
|
| 102 |
+
"execution_count": null,
|
| 103 |
+
"id": "f83954ba-f92a-42ce-8d1c-758f4054b4c5",
|
| 104 |
+
"metadata": {},
|
| 105 |
+
"outputs": [],
|
| 106 |
+
"source": []
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"cell_type": "code",
|
| 110 |
+
"execution_count": null,
|
| 111 |
+
"id": "117bbc79-5f58-4b31-9df1-dac75d7ef5a8",
|
| 112 |
+
"metadata": {},
|
| 113 |
+
"outputs": [],
|
| 114 |
+
"source": []
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"id": "8dae73ca-845a-4d1e-8e1f-b1efb36dec8e",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [],
|
| 122 |
+
"source": []
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"cell_type": "code",
|
| 126 |
+
"execution_count": null,
|
| 127 |
+
"id": "6c4fddf3-6e7a-40c7-a6c2-2e06f976ec56",
|
| 128 |
+
"metadata": {},
|
| 129 |
+
"outputs": [],
|
| 130 |
+
"source": [
|
| 131 |
+
"id = random.randint(1, table_size)\n",
|
| 132 |
+
"res = cur.execute(f\"\"\"SELECT question, option_1, option_2, option_3, option_4, correct_answer\n",
|
| 133 |
+
" FROM qna_tbl\n",
|
| 134 |
+
" WHERE id={id}\n",
|
| 135 |
+
" \"\"\")\n",
|
| 136 |
+
"result = res.fetchone()\n",
|
| 137 |
+
"result"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "code",
|
| 142 |
+
"execution_count": null,
|
| 143 |
+
"id": "f55b4a21-45b1-42a6-8ad1-352174b78806",
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"outputs": [],
|
| 146 |
+
"source": []
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": null,
|
| 151 |
+
"id": "c5ef430b-807c-4090-8ed2-969c43ba228e",
|
| 152 |
+
"metadata": {},
|
| 153 |
+
"outputs": [],
|
| 154 |
+
"source": [
|
| 155 |
+
"def get_qna_question(chapter_n):\n",
|
| 156 |
+
" sql_string = f\"\"\"SELECT id, question, option_1, option_2, option_3, option_4, correct_answer\n",
|
| 157 |
+
" FROM qna_tbl\n",
|
| 158 |
+
" WHERE chapter='{chapter_n}'\n",
|
| 159 |
+
" \"\"\"\n",
|
| 160 |
+
" res = cur.execute(sql_string)\n",
|
| 161 |
+
" result = res.fetchone()\n",
|
| 162 |
+
"\n",
|
| 163 |
+
" id = result[0]\n",
|
| 164 |
+
" question = result[1]\n",
|
| 165 |
+
" option_1 = result[2]\n",
|
| 166 |
+
" option_2 = result[3]\n",
|
| 167 |
+
" option_3 = result[4]\n",
|
| 168 |
+
" option_4 = result[5]\n",
|
| 169 |
+
" c_answer = result[6]\n",
|
| 170 |
+
"\n",
|
| 171 |
+
" qna_str = \"Question: \\n\" + \\\n",
|
| 172 |
+
" \"========= \\n\" + \\\n",
|
| 173 |
+
" question.replace(\"\\\\n\", \"\\n\") + \"\\n\" + \\\n",
|
| 174 |
+
" \"A) \" + option_1 + \"\\n\" + \\\n",
|
| 175 |
+
" \"B) \" + option_2 + \"\\n\" + \\\n",
|
| 176 |
+
" \"C) \" + option_3 + \"\\n\" + \\\n",
|
| 177 |
+
" \"D) \" + option_4\n",
|
| 178 |
+
" \n",
|
| 179 |
+
" return id, qna_str, c_answer"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "code",
|
| 184 |
+
"execution_count": null,
|
| 185 |
+
"id": "b61cc8eb-5118-438a-b38f-e01fc92c7387",
|
| 186 |
+
"metadata": {},
|
| 187 |
+
"outputs": [],
|
| 188 |
+
"source": []
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": null,
|
| 193 |
+
"id": "13702036-6457-464d-bd32-0e20dd7050e5",
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"qna_custom_functions = [\n",
|
| 198 |
+
" {\n",
|
| 199 |
+
" \"name\": \"get_qna_question\",\n",
|
| 200 |
+
" \"description\": \"\"\"\n",
|
| 201 |
+
" Extract the chapter information from the body of the input text, the format looks as follow:\n",
|
| 202 |
+
" The output should be in the format with `Chapter_` as prefix.\n",
|
| 203 |
+
" Example 1: `Chapter_1` for first chapter\n",
|
| 204 |
+
" Example 2: For chapter 12 of the textbook, you should return `Chapter_12`\n",
|
| 205 |
+
" Example 3: `Chapter_5` for fifth chapter\n",
|
| 206 |
+
" Thereafter, the chapter_n argument will be passed to the function for Q&A question retrieval.\n",
|
| 207 |
+
" \"\"\",\n",
|
| 208 |
+
" \"parameters\": {\n",
|
| 209 |
+
" \"type\": \"object\",\n",
|
| 210 |
+
" \"properties\": {\n",
|
| 211 |
+
" \"chapter_n\": {\n",
|
| 212 |
+
" \"type\": \"string\",\n",
|
| 213 |
+
" \"description\": \"\"\"\n",
|
| 214 |
+
" which chapter to extract, the format of this function argumet is with `Chapter_` as prefix, \n",
|
| 215 |
+
" concatenated with chapter number in integer. For example, `Chapter_2`, `Chapter_10`.\n",
|
| 216 |
+
" \"\"\"\n",
|
| 217 |
+
" }\n",
|
| 218 |
+
" }\n",
|
| 219 |
+
" }\n",
|
| 220 |
+
" }\n",
|
| 221 |
+
"]"
|
| 222 |
+
]
|
| 223 |
+
},
|
| 224 |
+
{
|
| 225 |
+
"cell_type": "code",
|
| 226 |
+
"execution_count": null,
|
| 227 |
+
"id": "1bbb95af-dd82-443f-b23c-97c9a2777e11",
|
| 228 |
+
"metadata": {},
|
| 229 |
+
"outputs": [],
|
| 230 |
+
"source": []
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "code",
|
| 234 |
+
"execution_count": null,
|
| 235 |
+
"id": "957fe647-c1f7-4db5-8f31-fb5e1f546c0c",
|
| 236 |
+
"metadata": {},
|
| 237 |
+
"outputs": [],
|
| 238 |
+
"source": [
|
| 239 |
+
"client = OpenAI()"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": null,
|
| 245 |
+
"id": "018fc414-d6df-408f-a14c-0a3857f4c52d",
|
| 246 |
+
"metadata": {},
|
| 247 |
+
"outputs": [],
|
| 248 |
+
"source": [
|
| 249 |
+
"prompt = \"I am interested in chapter 13, can you test my understanding of this chapter?\"\n",
|
| 250 |
+
"response = client.chat.completions.create(\n",
|
| 251 |
+
" model = 'gpt-3.5-turbo',\n",
|
| 252 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
| 253 |
+
" functions = qna_custom_functions,\n",
|
| 254 |
+
" function_call = 'auto'\n",
|
| 255 |
+
")\n",
|
| 256 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
| 257 |
+
"print(json_response)"
|
| 258 |
+
]
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"cell_type": "code",
|
| 262 |
+
"execution_count": null,
|
| 263 |
+
"id": "2408c546-335c-478a-b1ea-9c0921a9b7a0",
|
| 264 |
+
"metadata": {},
|
| 265 |
+
"outputs": [],
|
| 266 |
+
"source": [
|
| 267 |
+
"\n"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"id": "37ec1b9a-2cdd-4838-ab02-8260d392483f",
|
| 274 |
+
"metadata": {},
|
| 275 |
+
"outputs": [],
|
| 276 |
+
"source": [
|
| 277 |
+
"prompt = \"I am interested in chapter thirteen, can you test my understanding of this chapter?\"\n",
|
| 278 |
+
"response = client.chat.completions.create(\n",
|
| 279 |
+
" model = 'gpt-3.5-turbo',\n",
|
| 280 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
| 281 |
+
" functions = qna_custom_functions,\n",
|
| 282 |
+
" function_call = 'auto'\n",
|
| 283 |
+
")\n",
|
| 284 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
| 285 |
+
"print(json_response)"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "code",
|
| 290 |
+
"execution_count": null,
|
| 291 |
+
"id": "6b8e9f05-bb9a-429b-a1fb-abbaced23230",
|
| 292 |
+
"metadata": {},
|
| 293 |
+
"outputs": [],
|
| 294 |
+
"source": []
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"id": "18edebdd-2c7f-4589-8909-f816be5c4d1c",
|
| 300 |
+
"metadata": {},
|
| 301 |
+
"outputs": [],
|
| 302 |
+
"source": [
|
| 303 |
+
"prompt = \"I am interested in 4th chapter, can you test my understanding of this chapter?\"\n",
|
| 304 |
+
"response = client.chat.completions.create(\n",
|
| 305 |
+
" model = 'gpt-3.5-turbo',\n",
|
| 306 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
| 307 |
+
" functions = qna_custom_functions,\n",
|
| 308 |
+
" function_call = 'auto'\n",
|
| 309 |
+
")\n",
|
| 310 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
| 311 |
+
"print(json_response)"
|
| 312 |
+
]
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"cell_type": "code",
|
| 316 |
+
"execution_count": null,
|
| 317 |
+
"id": "d4325b3c-47d6-4d3f-a50a-45914b47a9c0",
|
| 318 |
+
"metadata": {},
|
| 319 |
+
"outputs": [],
|
| 320 |
+
"source": []
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"cell_type": "code",
|
| 324 |
+
"execution_count": null,
|
| 325 |
+
"id": "c558b722-4438-4485-98c0-b4117bc3d46e",
|
| 326 |
+
"metadata": {},
|
| 327 |
+
"outputs": [],
|
| 328 |
+
"source": [
|
| 329 |
+
"prompt = \"\"\"There are 15 chapters in the Health Insurance text book, I want to study the last chapter, \n",
|
| 330 |
+
" can you test my understanding of this chapter?\n",
|
| 331 |
+
" \"\"\"\n",
|
| 332 |
+
"response = client.chat.completions.create(\n",
|
| 333 |
+
" model = 'gpt-3.5-turbo',\n",
|
| 334 |
+
" messages = [{'role': 'user', 'content': prompt}],\n",
|
| 335 |
+
" functions = qna_custom_functions,\n",
|
| 336 |
+
" function_call = 'auto'\n",
|
| 337 |
+
")\n",
|
| 338 |
+
"json_response = json.loads(response.choices[0].message.function_call.arguments)\n",
|
| 339 |
+
"print(json_response)"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"execution_count": null,
|
| 345 |
+
"id": "074229dc-82d9-4a2b-9a08-019228da78a1",
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"outputs": [],
|
| 348 |
+
"source": []
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"cell_type": "code",
|
| 352 |
+
"execution_count": null,
|
| 353 |
+
"id": "289fba25-f547-402a-bd13-0dc4ce7ddf8e",
|
| 354 |
+
"metadata": {},
|
| 355 |
+
"outputs": [],
|
| 356 |
+
"source": [
|
| 357 |
+
"id, qna_str, answer = get_qna_question(chapter_n=json_response[\"chapter_n\"])\n",
|
| 358 |
+
"print(qna_str)"
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"cell_type": "code",
|
| 363 |
+
"execution_count": null,
|
| 364 |
+
"id": "adc9f539-3654-4174-815b-e0939f513a20",
|
| 365 |
+
"metadata": {},
|
| 366 |
+
"outputs": [],
|
| 367 |
+
"source": []
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"cell_type": "code",
|
| 371 |
+
"execution_count": null,
|
| 372 |
+
"id": "5b6ad929-e6a5-4978-8678-519375ef62eb",
|
| 373 |
+
"metadata": {},
|
| 374 |
+
"outputs": [],
|
| 375 |
+
"source": []
|
| 376 |
+
}
|
| 377 |
+
],
|
| 378 |
+
"metadata": {
|
| 379 |
+
"kernelspec": {
|
| 380 |
+
"display_name": "Python 3 (ipykernel)",
|
| 381 |
+
"language": "python",
|
| 382 |
+
"name": "python3"
|
| 383 |
+
},
|
| 384 |
+
"language_info": {
|
| 385 |
+
"codemirror_mode": {
|
| 386 |
+
"name": "ipython",
|
| 387 |
+
"version": 3
|
| 388 |
+
},
|
| 389 |
+
"file_extension": ".py",
|
| 390 |
+
"mimetype": "text/x-python",
|
| 391 |
+
"name": "python",
|
| 392 |
+
"nbconvert_exporter": "python",
|
| 393 |
+
"pygments_lexer": "ipython3",
|
| 394 |
+
"version": "3.9.18"
|
| 395 |
+
}
|
| 396 |
+
},
|
| 397 |
+
"nbformat": 4,
|
| 398 |
+
"nbformat_minor": 5
|
| 399 |
+
}
|
notebooks/qna_prompting_with_pydantic.ipynb
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "6f0f5f02-c8e9-43a9-853d-12bb3c19dbe8",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"from pydantic import BaseModel"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": null,
|
| 16 |
+
"id": "94244a1e-e55a-4954-885e-4558797c6fe3",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"from llama_index.llms import OpenAI"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": null,
|
| 26 |
+
"id": "641f36c7-0aa3-4146-9840-bfb0d4d78b4d",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"from llama_index.core.tools import BaseTool, FunctionTool"
|
| 31 |
+
]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"cell_type": "code",
|
| 35 |
+
"execution_count": null,
|
| 36 |
+
"id": "cb20cd13-20fd-4303-acde-b7abe0b48e39",
|
| 37 |
+
"metadata": {},
|
| 38 |
+
"outputs": [],
|
| 39 |
+
"source": []
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"id": "ab4d1a52-84be-492f-8275-3da20d854cb6",
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"class Song(BaseModel):\n",
|
| 49 |
+
" \"\"\"A song with name and artist\"\"\"\n",
|
| 50 |
+
"\n",
|
| 51 |
+
" name: str\n",
|
| 52 |
+
" artist: str"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": null,
|
| 58 |
+
"id": "a5822b1d-32ef-4b68-8629-a727ff51cd0a",
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": []
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "code",
|
| 65 |
+
"execution_count": null,
|
| 66 |
+
"id": "63332a44-9441-4f49-85a2-934e2c55a362",
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"song_fn = FunctionTool.from_defaults(fn=Song)"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": null,
|
| 76 |
+
"id": "ef0d7d67-9855-47ea-8569-7bfb20b03a07",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"response = OpenAI().complete(\"Generate a song\", tools=[song_fn])\n",
|
| 81 |
+
"tool_calls = response.additional_kwargs[\"tool_calls\"]"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": null,
|
| 87 |
+
"id": "bca4c0b2-5165-4943-af1f-d3168ee88fcd",
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": []
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"metadata": {
|
| 94 |
+
"kernelspec": {
|
| 95 |
+
"display_name": "Python 3 (ipykernel)",
|
| 96 |
+
"language": "python",
|
| 97 |
+
"name": "python3"
|
| 98 |
+
},
|
| 99 |
+
"language_info": {
|
| 100 |
+
"codemirror_mode": {
|
| 101 |
+
"name": "ipython",
|
| 102 |
+
"version": 3
|
| 103 |
+
},
|
| 104 |
+
"file_extension": ".py",
|
| 105 |
+
"mimetype": "text/x-python",
|
| 106 |
+
"name": "python",
|
| 107 |
+
"nbconvert_exporter": "python",
|
| 108 |
+
"pygments_lexer": "ipython3",
|
| 109 |
+
"version": "3.9.18"
|
| 110 |
+
}
|
| 111 |
+
},
|
| 112 |
+
"nbformat": 4,
|
| 113 |
+
"nbformat_minor": 5
|
| 114 |
+
}
|
raw_documents/qna.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96f148c23c11fe6df506f5286d2c90143b274ce2705501deaeac47fa63863825
|
| 3 |
+
size 2134
|
requirements.txt
CHANGED
|
@@ -16,9 +16,10 @@ attrs==23.2.0
|
|
| 16 |
Babel==2.14.0
|
| 17 |
backoff==2.2.1
|
| 18 |
bcrypt==4.1.2
|
| 19 |
-
beautifulsoup4==4.12.
|
| 20 |
bleach==6.1.0
|
| 21 |
blinker==1.7.0
|
|
|
|
| 22 |
build==1.0.3
|
| 23 |
cachetools==5.3.2
|
| 24 |
certifi==2023.11.17
|
|
@@ -37,6 +38,7 @@ decorator==5.1.1
|
|
| 37 |
defusedxml==0.7.1
|
| 38 |
Deprecated==1.2.14
|
| 39 |
dill==0.3.7
|
|
|
|
| 40 |
distro==1.9.0
|
| 41 |
entrypoints==0.4
|
| 42 |
exceptiongroup==1.2.0
|
|
|
|
| 16 |
Babel==2.14.0
|
| 17 |
backoff==2.2.1
|
| 18 |
bcrypt==4.1.2
|
| 19 |
+
beautifulsoup4==4.12.3
|
| 20 |
bleach==6.1.0
|
| 21 |
blinker==1.7.0
|
| 22 |
+
bs4==0.0.2
|
| 23 |
build==1.0.3
|
| 24 |
cachetools==5.3.2
|
| 25 |
certifi==2023.11.17
|
|
|
|
| 38 |
defusedxml==0.7.1
|
| 39 |
Deprecated==1.2.14
|
| 40 |
dill==0.3.7
|
| 41 |
+
dirtyjson==1.0.8
|
| 42 |
distro==1.9.0
|
| 43 |
entrypoints==0.4
|
| 44 |
exceptiongroup==1.2.0
|
streamlit_app.py
CHANGED
|
@@ -7,12 +7,15 @@ import base64
|
|
| 7 |
from io import BytesIO
|
| 8 |
import nest_asyncio
|
| 9 |
|
| 10 |
-
|
| 11 |
-
from llama_index import
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
from llama_index.embeddings import HuggingFaceEmbedding
|
|
|
|
| 16 |
from llama_index.memory import ChatMemoryBuffer
|
| 17 |
|
| 18 |
from vision_api import get_transcribed_text
|
|
@@ -27,6 +30,8 @@ openai_api = os.getenv("OPENAI_API_KEY")
|
|
| 27 |
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
| 28 |
"./raw_documents/qna.txt"]
|
| 29 |
embedding_model = "BAAI/bge-small-en-v1.5"
|
|
|
|
|
|
|
| 30 |
system_content = ("You are a helpful study assistant. "
|
| 31 |
"You do not respond as 'User' or pretend to be 'User'. "
|
| 32 |
"You only respond once as 'Assistant'."
|
|
@@ -104,7 +109,9 @@ def clear_chat_history():
|
|
| 104 |
llm_model=selected_model,
|
| 105 |
temperature=temperature,
|
| 106 |
embedding_model=embedding_model,
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
chat_engine.reset()
|
| 109 |
|
| 110 |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
|
@@ -124,23 +131,52 @@ def get_llm_object(selected_model, temperature):
|
|
| 124 |
return llm
|
| 125 |
|
| 126 |
@st.cache_resource
|
| 127 |
-
def get_embedding_model(model_name):
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
return embed_model
|
| 130 |
|
| 131 |
@st.cache_resource
|
| 132 |
-
def get_query_engine(input_files, llm_model, temperature,
|
| 133 |
-
embedding_model,
|
| 134 |
-
|
| 135 |
-
|
| 136 |
llm = get_llm_object(llm_model, temperature)
|
| 137 |
-
embedded_model = get_embedding_model(
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
| 142 |
-
|
| 143 |
-
# chat_engine = index.as_query_engine(streaming=True)
|
| 144 |
chat_engine = index.as_chat_engine(
|
| 145 |
chat_mode="context",
|
| 146 |
memory=memory,
|
|
@@ -154,7 +190,9 @@ def generate_llm_response(prompt_input):
|
|
| 154 |
llm_model=selected_model,
|
| 155 |
temperature=temperature,
|
| 156 |
embedding_model=embedding_model,
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
# st.session_state.messages
|
| 160 |
response = chat_engine.stream_chat(prompt_input)
|
|
|
|
| 7 |
from io import BytesIO
|
| 8 |
import nest_asyncio
|
| 9 |
|
| 10 |
+
import chromadb
|
| 11 |
+
from llama_index import (VectorStoreIndex,
|
| 12 |
+
SimpleDirectoryReader,
|
| 13 |
+
ServiceContext,
|
| 14 |
+
Document)
|
| 15 |
+
from llama_index.vector_stores import ChromaVectorStore
|
| 16 |
+
from llama_index.storage.storage_context import StorageContext
|
| 17 |
from llama_index.embeddings import HuggingFaceEmbedding
|
| 18 |
+
from llama_index.llms import OpenAI
|
| 19 |
from llama_index.memory import ChatMemoryBuffer
|
| 20 |
|
| 21 |
from vision_api import get_transcribed_text
|
|
|
|
| 30 |
input_files = ["./raw_documents/HI Chapter Summary Version 1.3.pdf",
|
| 31 |
"./raw_documents/qna.txt"]
|
| 32 |
embedding_model = "BAAI/bge-small-en-v1.5"
|
| 33 |
+
persisted_vector_db = "./models/chroma_db"
|
| 34 |
+
fine_tuned_path = "local:models/fine-tuned-embeddings"
|
| 35 |
system_content = ("You are a helpful study assistant. "
|
| 36 |
"You do not respond as 'User' or pretend to be 'User'. "
|
| 37 |
"You only respond once as 'Assistant'."
|
|
|
|
| 109 |
llm_model=selected_model,
|
| 110 |
temperature=temperature,
|
| 111 |
embedding_model=embedding_model,
|
| 112 |
+
fine_tuned_path=fine_tuned_path,
|
| 113 |
+
system_content=system_content,
|
| 114 |
+
persisted_path=persisted_vector_db)
|
| 115 |
chat_engine.reset()
|
| 116 |
|
| 117 |
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
|
|
|
|
| 131 |
return llm
|
| 132 |
|
| 133 |
@st.cache_resource
|
| 134 |
+
def get_embedding_model(model_name, fine_tuned_path=None):
|
| 135 |
+
if fine_tuned_path is None:
|
| 136 |
+
print(f"loading from `{model_name}` from huggingface")
|
| 137 |
+
embed_model = HuggingFaceEmbedding(model_name=model_name)
|
| 138 |
+
else:
|
| 139 |
+
print(f"loading from local `{fine_tuned_path}`")
|
| 140 |
+
embed_model = fine_tuned_path
|
| 141 |
return embed_model
|
| 142 |
|
| 143 |
@st.cache_resource
|
| 144 |
+
def get_query_engine(input_files, llm_model, temperature,
|
| 145 |
+
embedding_model, fine_tuned_path,
|
| 146 |
+
system_content, persisted_path):
|
| 147 |
+
|
| 148 |
llm = get_llm_object(llm_model, temperature)
|
| 149 |
+
embedded_model = get_embedding_model(
|
| 150 |
+
model_name=embedding_model,
|
| 151 |
+
fine_tuned_path=fine_tuned_path
|
| 152 |
+
)
|
| 153 |
+
service_context = ServiceContext.from_defaults(
|
| 154 |
+
llm=llm,
|
| 155 |
+
embed_model=embedded_model
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
if os.path.exists(persisted_path):
|
| 159 |
+
print("loading from vector database - chroma")
|
| 160 |
+
db = chromadb.PersistentClient(path=persisted_path)
|
| 161 |
+
chroma_collection = db.get_or_create_collection("quickstart")
|
| 162 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 163 |
+
storage_context = StorageContext.from_defaults(
|
| 164 |
+
vector_store=vector_store
|
| 165 |
+
)
|
| 166 |
+
index = VectorStoreIndex.from_vector_store(
|
| 167 |
+
vector_store=vector_store,
|
| 168 |
+
service_context=service_context,
|
| 169 |
+
storage_context=storage_context
|
| 170 |
+
)
|
| 171 |
+
else:
|
| 172 |
+
print("create in-memory vector store")
|
| 173 |
+
document = get_document_object(input_files)
|
| 174 |
+
index = VectorStoreIndex.from_documents(
|
| 175 |
+
[document],
|
| 176 |
+
service_context=service_context
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
memory = ChatMemoryBuffer.from_defaults(token_limit=15000)
|
|
|
|
|
|
|
| 180 |
chat_engine = index.as_chat_engine(
|
| 181 |
chat_mode="context",
|
| 182 |
memory=memory,
|
|
|
|
| 190 |
llm_model=selected_model,
|
| 191 |
temperature=temperature,
|
| 192 |
embedding_model=embedding_model,
|
| 193 |
+
fine_tuned_path=fine_tuned_path,
|
| 194 |
+
system_content=system_content,
|
| 195 |
+
persisted_path=persisted_vector_db)
|
| 196 |
|
| 197 |
# st.session_state.messages
|
| 198 |
response = chat_engine.stream_chat(prompt_input)
|