|
import gradio as gr |
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer |
|
from transformers.image_utils import load_image |
|
from threading import Thread |
|
import time |
|
import torch |
|
import spaces |
|
|
|
MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" |
|
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
MODEL_ID, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16 |
|
).to("cuda").eval() |
|
|
|
@spaces.GPU |
|
def model_inference(input_dict, history): |
|
text = input_dict["text"] |
|
files = input_dict["files"] |
|
|
|
|
|
if len(files) > 1: |
|
images = [load_image(image) for image in files] |
|
elif len(files) == 1: |
|
images = [load_image(files[0])] |
|
else: |
|
images = [] |
|
|
|
|
|
if text == "" and not images: |
|
gr.Error("Please input a query and optionally image(s).") |
|
return |
|
if text == "" and images: |
|
gr.Error("Please input a text query along with the image(s).") |
|
return |
|
|
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
*[{"type": "image", "image": image} for image in images], |
|
{"type": "text", "text": text}, |
|
], |
|
} |
|
] |
|
|
|
|
|
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = processor( |
|
text=[prompt], |
|
images=images if images else None, |
|
return_tensors="pt", |
|
padding=True, |
|
).to("cuda") |
|
|
|
|
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
|
|
buffer = "" |
|
yield "Thinking..." |
|
for new_text in streamer: |
|
buffer += new_text |
|
time.sleep(0.01) |
|
yield buffer |
|
|
|
|
|
|
|
examples = [ |
|
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}], |
|
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], |
|
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}], |
|
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], |
|
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], |
|
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], |
|
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], |
|
|
|
] |
|
|
|
demo = gr.ChatInterface( |
|
fn=model_inference, |
|
description="# **Qwen2.5-VL-7B-Instruct**", |
|
examples=examples, |
|
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), |
|
stop_btn="Stop Generation", |
|
multimodal=True, |
|
cache_examples=False, |
|
) |
|
|
|
demo.launch(debug=True) |