File size: 10,382 Bytes
1393b01
796d506
0585716
 
796d506
26a1157
 
7295302
ad03828
796d506
64e99f5
796d506
 
7295302
211a715
26a1157
 
796d506
 
7295302
c1d0430
796d506
7295302
796d506
 
 
 
 
 
6ef37cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
922a193
1393b01
 
75d1ef3
0585716
 
796d506
0585716
 
75d1ef3
796d506
211a715
ad03828
0585716
 
796d506
2a7f249
75d1ef3
 
1393b01
75d1ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b323e3d
5888100
796d506
64e99f5
 
 
75d1ef3
 
6188097
0585716
75d1ef3
0585716
 
 
 
75d1ef3
 
 
0585716
75d1ef3
0585716
211a715
011301a
8be82f3
e7f2f83
 
796d506
205190d
75d1ef3
 
b323e3d
 
75d1ef3
0585716
75d1ef3
0585716
 
 
75d1ef3
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef37cd
75d1ef3
 
ad03828
 
 
 
 
b323e3d
ad03828
 
 
 
 
 
1393b01
ad03828
 
 
 
0585716
ad03828
011301a
 
 
 
 
ad03828
b8352d5
64e99f5
 
 
 
 
 
 
 
ad03828
 
6ef37cd
26a1157
 
 
 
 
 
 
 
 
 
13fef30
26a1157
75d1ef3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import pathlib
import random
import string
import tempfile
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List

import gradio as gr
import huggingface_hub
import torch
import yaml
from gradio_logsview.logsview import Log, LogsView, LogsViewRunner
from mergekit.config import MergeConfiguration
from clean_community_org import garbage_collect_empty_models

has_gpu = torch.cuda.is_available()

cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + (
    " --cuda --low-cpu-memory --allow-crimes" if has_gpu else " --allow-crimes --out-shard-size 1B --lazy-unpickle"
)

MARKDOWN_DESCRIPTION = """
# mergekit-gui
The fastest way to perform a model merge 🔥
Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile.
"""

MARKDOWN_ARTICLE = """
___
## Merge Configuration
[Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model.
Below are the primary elements of a configuration file:
- `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list.
- `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
- `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
- `base_model`: Specifies the base model used in some merging methods.
- `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
- `dtype`: Specifies the data type used for the merging operation.
- `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
## Merge Methods
A quick overview of the currently supported merge methods:
| Method                                                                                       | `merge_method` value | Multi-Model | Uses base model |
| -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- |
| Linear ([Model Soups](https://arxiv.org/abs/2203.05482))                                     | `linear`             | ✅          | ❌              |
| SLERP                                                                                        | `slerp`              | ❌          | ✅              |
| [Task Arithmetic](https://arxiv.org/abs/2212.04089)                                          | `task_arithmetic`    | ✅          | ✅              |
| [TIES](https://arxiv.org/abs/2306.01708)                                                     | `ties`               | ✅          | ✅              |
| [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708)            | `dare_ties`          | ✅          | ✅              |
| [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear`        | ✅          | ✅              |
| Passthrough                                                                                  | `passthrough`        | ❌          | ❌              |
| [Model Stock](https://arxiv.org/abs/2403.19522)                                              | `model_stock`        | ✅          | ✅              |
## Citation
This GUI is powered by [Arcee's MergeKit](https://arxiv.org/abs/2403.13257).
If you use it in your research, please cite the following paper:
@article{goddard2024arcee,
  title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
  author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
  journal={arXiv preprint arXiv:2403.13257},
  year={2024}
}

This Space is heavily inspired by LazyMergeKit by Maxime Labonne (see [Colab](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb)).
"""

examples = [[str(f)] for f in pathlib.Path("examples").glob("*.yaml")]
COMMUNITY_HF_TOKEN = os.getenv("COMMUNITY_HF_TOKEN")

def merge_multiple_methods(yaml_config: str, hf_token: str, repo_name: str, profile_name: str) -> Iterable[List[Log]]:
    runner = LogsViewRunner()

    if not yaml_config:
        yield runner.log("Empty yaml, pick an example below", level="ERROR")
        return

    try:
        merge_config = MergeConfiguration.model_validate(yaml.safe_load(yaml_config))
    except Exception as e:
        yield runner.log(f"Invalid yaml {e}", level="ERROR")
        return

    methods_to_merge = ['dare_ties', 'ties']
    current_yaml_config = yaml_config
    merged_model_path = None

    for method in methods_to_merge:
        yield from run_merge_for_method(method, current_yaml_config, hf_token, repo_name, profile_name, runner)
        current_yaml_config = get_merged_yaml(current_yaml_config, method)
        yield runner.log(f"Model merged with {method}. Proceeding to next method...")

    merged_model_path = "final_merged_model"  # Placeholder, adjust based on your process

    if merged_model_path:
        yield runner.log(f"Model successfully merged using all methods. Saving unified model to {merged_model_path}")
        # Save final YAML
        example_yaml = generate_example_yaml(methods_to_merge)
        yield runner.log(f"Generated example YAML: {example_yaml}")

        # Here, you could potentially upload the final merged model
        # Upload logic goes here if needed

def get_merged_yaml(original_yaml: str, method: str) -> str:
    yaml_data = yaml.safe_load(original_yaml)
    yaml_data['merge_method'] = method
    return yaml.dump(yaml_data)

def run_merge_for_method(method: str, yaml_config: str, hf_token: str, repo_name: str, profile_name: str, runner: LogsViewRunner):
    yaml_data = yaml.safe_load(yaml_config)
    yaml_data['merge_method'] = method
    new_yaml_config = yaml.dump(yaml_data)

    with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
        tmpdir = pathlib.Path(tmpdirname)
        merged_path = tmpdir / "merged"
        merged_path.mkdir(parents=True, exist_ok=True)
        config_path = merged_path / "config.yaml"
        config_path.write_text(new_yaml_config)
        yield runner.log(f"Merge configuration saved for {method} in {config_path}")

        if not repo_name:
            repo_name = f"{profile_name}/mergekit-{method}" if profile_name else f"mergekit-{method}"
            repo_name += "-" + "".join(random.choices(string.ascii_lowercase, k=7))
            repo_name = repo_name.replace("/", "-").strip("-")

        try:
            yield runner.log(f"Creating repo for {method} {repo_name}")
            repo_url = huggingface_hub.HfApi(token=hf_token).create_repo(repo_name, exist_ok=True)
            yield runner.log(f"Repo created for {method}: {repo_url}")
        except Exception as e:
            yield runner.log(f"Error creating repo for {method}: {e}", level="ERROR")
            return

        tmp_env = os.environ.copy()
        tmp_env["HF_HOME"] = f"{tmpdirname}/.cache"
        full_cli = cli + f" --lora-merge-cache {tmpdirname}/.lora_cache"
        yield from runner.run_command(full_cli.split(), cwd=merged_path, env=tmp_env)

        if runner.exit_code != 0:
            yield runner.log(f"Merge for {method} failed. Deleting repo as no model is uploaded.", level="ERROR")
            huggingface_hub.HfApi(token=hf_token).delete_repo(repo_url.repo_id)
            return

        yield runner.log(f"Model merged with {method}. Uploading to HF.")
        yield from runner.run_python(
            huggingface_hub.HfApi(token=hf_token).upload_folder,
            repo_id=repo_url.repo_id,
            folder_path=merged_path / "merge",
        )
        yield runner.log(f"Model successfully uploaded to HF with {method}: {repo_url.repo_id}")

def generate_example_yaml(methods: List[str]) -> str:
    """Genera un archivo YAML de ejemplo que refleja la secuencia de métodos de fusión aplicados"""
    example_yaml = {
        'merge_method': 'linear',  # O el método final que decidas usar
        'models': ['model1', 'model2', 'model3'],  # Ejemplo de modelos a fusionar
        'slices': None,  # Puedes agregar slices si es necesario
        'parameters': {
            'normalize': False,
            'weight': 0.5
        },
        'tokenizer_source': 'union',  # Definir el tokenizer
    }
    example_yaml['merge_method_sequence'] = methods
    return yaml.dump(example_yaml)

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN_DESCRIPTION)

    with gr.Row():
        filename = gr.Textbox(visible=False, label="filename")
        config = gr.Code(language="yaml", lines=10, label="config.yaml")
        with gr.Column():
            token = gr.Textbox(
                lines=1,
                label="HF Write Token",
                info="https://hf.co/settings/token",
                type="password",
                placeholder="Optional. Will upload merged model to MergeKit Community if empty.",
            )
            repo_name = gr.Textbox(
                lines=1,
                label="Repo name",
                placeholder="Optional. Will create a random name if empty.",
            )
            profile_name = gr.Textbox(
                lines=1,
                label="Hugging Face Profile Name",
                placeholder="Enter your Hugging Face profile name.",
            )
    button = gr.Button("Merge", variant="primary")
    logs = LogsView(label="Terminal output")
    gr.Examples(
        examples,
        fn=lambda s: (s,),
        run_on_click=True,
        label="Examples",
        inputs=[filename],
        outputs=[config],
    )
    gr.Markdown(MARKDOWN_ARTICLE)

    button.click(fn=merge_multiple_methods, inputs=[config, token, repo_name, profile_name], outputs=[logs])

def _garbage_collect_every_hour():
    while True:
        try:
            garbage_collect_empty_models(token=COMMUNITY_HF_TOKEN)
        except Exception as e:
            print("Error running garbage collection", e)
        time.sleep(3600)

pool = ThreadPoolExecutor()
pool.submit(_garbage_collect_every_hour)

demo.queue(default_concurrency_limit=2).launch()