Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from llama_cpp import Llama
|
| 4 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 5 |
+
import uvicorn
|
| 6 |
+
import re
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
import spaces
|
| 9 |
+
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
global_data = {
|
| 15 |
+
'models': {},
|
| 16 |
+
'tokens': {
|
| 17 |
+
'eos': 'eos_token',
|
| 18 |
+
'pad': 'pad_token',
|
| 19 |
+
'padding': 'padding_token',
|
| 20 |
+
'unk': 'unk_token',
|
| 21 |
+
'bos': 'bos_token',
|
| 22 |
+
'sep': 'sep_token',
|
| 23 |
+
'cls': 'cls_token',
|
| 24 |
+
'mask': 'mask_token'
|
| 25 |
+
}
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
model_configs = [
|
| 29 |
+
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
| 30 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
| 31 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
| 32 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
| 33 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
| 34 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
| 35 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
| 36 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
| 37 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
| 38 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
|
| 39 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
| 40 |
+
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
| 41 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
| 42 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
| 43 |
+
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
| 44 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
| 45 |
+
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
| 46 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
|
| 47 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
class ModelManager:
|
| 51 |
+
def __init__(self):
|
| 52 |
+
self.loaded = False
|
| 53 |
+
|
| 54 |
+
def load_model(self, model_config):
|
| 55 |
+
try:
|
| 56 |
+
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
| 57 |
+
except Exception:
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
def load_all_models(self):
|
| 61 |
+
if self.loaded:
|
| 62 |
+
return global_data['models']
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
with ThreadPoolExecutor() as executor:
|
| 66 |
+
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
| 67 |
+
models = []
|
| 68 |
+
for future in as_completed(futures):
|
| 69 |
+
model = future.result()
|
| 70 |
+
if model:
|
| 71 |
+
models.append(model)
|
| 72 |
+
|
| 73 |
+
global_data['models'] = models
|
| 74 |
+
self.loaded = True
|
| 75 |
+
return models
|
| 76 |
+
except Exception:
|
| 77 |
+
pass
|
| 78 |
+
|
| 79 |
+
model_manager = ModelManager()
|
| 80 |
+
model_manager.load_all_models()
|
| 81 |
+
|
| 82 |
+
class ChatRequest(BaseModel):
|
| 83 |
+
message: str
|
| 84 |
+
top_k: int = 50
|
| 85 |
+
top_p: float = 0.95
|
| 86 |
+
temperature: float = 0.7
|
| 87 |
+
|
| 88 |
+
def normalize_input(input_text):
|
| 89 |
+
return input_text.strip()
|
| 90 |
+
|
| 91 |
+
def remove_duplicates(text):
|
| 92 |
+
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
| 93 |
+
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
| 94 |
+
text = text.replace('[/INST]', '')
|
| 95 |
+
lines = text.split('\n')
|
| 96 |
+
unique_lines = []
|
| 97 |
+
seen_lines = set()
|
| 98 |
+
for line in lines:
|
| 99 |
+
if line not in seen_lines:
|
| 100 |
+
seen_lines.add(line)
|
| 101 |
+
unique_lines.append(line)
|
| 102 |
+
return '\n'.join(unique_lines)
|
| 103 |
+
|
| 104 |
+
def remove_repetitive_responses(responses):
|
| 105 |
+
seen = set()
|
| 106 |
+
unique_responses = []
|
| 107 |
+
for response in responses:
|
| 108 |
+
normalized_response = remove_duplicates(response['response'])
|
| 109 |
+
if normalized_response not in seen:
|
| 110 |
+
seen.add(normalized_response)
|
| 111 |
+
unique_responses.append(response)
|
| 112 |
+
return unique_responses
|
| 113 |
+
|
| 114 |
+
def generate_chat_response(request, model_data):
|
| 115 |
+
model = model_data['model']
|
| 116 |
+
try:
|
| 117 |
+
user_input = normalize_input(request.message)
|
| 118 |
+
response = model(user_input, top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
|
| 119 |
+
return {"model": model_data['name'], "response": response}
|
| 120 |
+
except Exception:
|
| 121 |
+
pass
|
| 122 |
+
|
| 123 |
+
@spaces.GPU(duration=0)
|
| 124 |
+
async def generate(request: ChatRequest):
|
| 125 |
+
try:
|
| 126 |
+
responses = []
|
| 127 |
+
with ThreadPoolExecutor() as executor:
|
| 128 |
+
futures = [executor.submit(generate_chat_response, request, model_data) for model_data in global_data['models']]
|
| 129 |
+
for future in as_completed(futures):
|
| 130 |
+
try:
|
| 131 |
+
response = future.result()
|
| 132 |
+
if response:
|
| 133 |
+
responses.append(response)
|
| 134 |
+
except Exception:
|
| 135 |
+
pass
|
| 136 |
+
|
| 137 |
+
if not responses:
|
| 138 |
+
raise HTTPException(status_code=500, detail="Error: No responses generated.")
|
| 139 |
+
|
| 140 |
+
responses = remove_repetitive_responses(responses)
|
| 141 |
+
best_response = responses[0] if responses else {}
|
| 142 |
+
return {
|
| 143 |
+
"best_response": best_response,
|
| 144 |
+
"all_responses": responses
|
| 145 |
+
}
|
| 146 |
+
except Exception:
|
| 147 |
+
pass
|
| 148 |
+
|
| 149 |
+
@app.api_route("/{method_name:path}", methods=["GET", "POST", "PUT", "DELETE", "PATCH"])
|
| 150 |
+
async def handle_request(method_name: str):
|
| 151 |
+
try:
|
| 152 |
+
return {"message": "Request handled successfully"}
|
| 153 |
+
except Exception:
|
| 154 |
+
raise HTTPException(status_code=500, detail="Error: Internal Server Error")
|
| 155 |
+
|
| 156 |
+
if __name__ == "__main__":
|
| 157 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|