Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,43 +7,54 @@ import uvicorn
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from difflib import SequenceMatcher
|
| 9 |
import re
|
| 10 |
-
|
| 11 |
-
import httpx
|
| 12 |
|
| 13 |
-
# Cargar variables de entorno
|
| 14 |
load_dotenv()
|
| 15 |
|
| 16 |
-
# Inicializar aplicaci贸n FastAPI
|
| 17 |
app = FastAPI()
|
| 18 |
|
| 19 |
-
# Diccionario global para almacenar los modelos
|
| 20 |
global_data = {
|
| 21 |
'models': []
|
| 22 |
}
|
| 23 |
|
| 24 |
-
# Configuraci贸n de los modelos (incluyendo los nuevos)
|
| 25 |
model_configs = [
|
| 26 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
| 27 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
| 30 |
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
|
|
|
|
|
|
|
|
|
| 31 |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
|
| 32 |
]
|
| 33 |
|
| 34 |
-
# Clase para gestionar modelos
|
| 35 |
class ModelManager:
|
| 36 |
def __init__(self):
|
| 37 |
self.models = []
|
|
|
|
| 38 |
|
| 39 |
def load_model(self, model_config):
|
| 40 |
print(f"Cargando modelo: {model_config['name']}...")
|
| 41 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
| 42 |
|
| 43 |
-
@GPU(duration=0)
|
| 44 |
def load_all_models(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
print("Iniciando carga de modelos...")
|
| 46 |
-
with ThreadPoolExecutor(
|
| 47 |
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
| 48 |
models = []
|
| 49 |
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
|
|
@@ -53,21 +64,23 @@ class ModelManager:
|
|
| 53 |
print(f"Modelo cargado exitosamente: {model['name']}")
|
| 54 |
except Exception as e:
|
| 55 |
print(f"Error al cargar el modelo: {e}")
|
|
|
|
|
|
|
|
|
|
| 56 |
print("Todos los modelos han sido cargados.")
|
| 57 |
-
return models
|
| 58 |
|
| 59 |
-
# Instanciar ModelManager y cargar modelos una sola vez
|
| 60 |
model_manager = ModelManager()
|
|
|
|
| 61 |
global_data['models'] = model_manager.load_all_models()
|
| 62 |
|
| 63 |
-
# Modelo global para la solicitud de chat
|
| 64 |
class ChatRequest(BaseModel):
|
| 65 |
message: str
|
| 66 |
top_k: int = 50
|
| 67 |
top_p: float = 0.95
|
| 68 |
temperature: float = 0.7
|
| 69 |
|
| 70 |
-
|
| 71 |
def generate_chat_response(request, model_data):
|
| 72 |
try:
|
| 73 |
user_input = normalize_input(request.message)
|
|
@@ -104,40 +117,44 @@ def remove_repetitive_responses(responses):
|
|
| 104 |
unique_responses.append(response)
|
| 105 |
return unique_responses
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
| 141 |
|
| 142 |
if __name__ == "__main__":
|
| 143 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from difflib import SequenceMatcher
|
| 9 |
import re
|
| 10 |
+
import spaces
|
|
|
|
| 11 |
|
|
|
|
| 12 |
load_dotenv()
|
| 13 |
|
|
|
|
| 14 |
app = FastAPI()
|
| 15 |
|
|
|
|
| 16 |
global_data = {
|
| 17 |
'models': []
|
| 18 |
}
|
| 19 |
|
|
|
|
| 20 |
model_configs = [
|
| 21 |
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
| 22 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
| 23 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
| 24 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
| 25 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
| 26 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
| 27 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
| 28 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
| 29 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
| 30 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
|
| 31 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
|
| 32 |
+
{"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
|
| 33 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
|
| 34 |
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
|
| 35 |
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
|
| 36 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
|
| 37 |
+
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
|
| 38 |
+
{"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
|
| 39 |
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
|
| 40 |
]
|
| 41 |
|
|
|
|
| 42 |
class ModelManager:
|
| 43 |
def __init__(self):
|
| 44 |
self.models = []
|
| 45 |
+
self.loaded = False
|
| 46 |
|
| 47 |
def load_model(self, model_config):
|
| 48 |
print(f"Cargando modelo: {model_config['name']}...")
|
| 49 |
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
| 50 |
|
|
|
|
| 51 |
def load_all_models(self):
|
| 52 |
+
if self.loaded:
|
| 53 |
+
print("Modelos ya est谩n cargados. No es necesario volver a cargarlos.")
|
| 54 |
+
return self.models
|
| 55 |
+
|
| 56 |
print("Iniciando carga de modelos...")
|
| 57 |
+
with ThreadPoolExecutor() as executor:
|
| 58 |
futures = [executor.submit(self.load_model, config) for config in model_configs]
|
| 59 |
models = []
|
| 60 |
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
|
|
|
|
| 64 |
print(f"Modelo cargado exitosamente: {model['name']}")
|
| 65 |
except Exception as e:
|
| 66 |
print(f"Error al cargar el modelo: {e}")
|
| 67 |
+
|
| 68 |
+
self.models = models
|
| 69 |
+
self.loaded = True
|
| 70 |
print("Todos los modelos han sido cargados.")
|
| 71 |
+
return self.models
|
| 72 |
|
|
|
|
| 73 |
model_manager = ModelManager()
|
| 74 |
+
|
| 75 |
global_data['models'] = model_manager.load_all_models()
|
| 76 |
|
|
|
|
| 77 |
class ChatRequest(BaseModel):
|
| 78 |
message: str
|
| 79 |
top_k: int = 50
|
| 80 |
top_p: float = 0.95
|
| 81 |
temperature: float = 0.7
|
| 82 |
|
| 83 |
+
@spaces.GPU(duration=0)
|
| 84 |
def generate_chat_response(request, model_data):
|
| 85 |
try:
|
| 86 |
user_input = normalize_input(request.message)
|
|
|
|
| 117 |
unique_responses.append(response)
|
| 118 |
return unique_responses
|
| 119 |
|
| 120 |
+
def select_best_response(responses):
|
| 121 |
+
print("Filtrando respuestas...")
|
| 122 |
+
responses = remove_repetitive_responses(responses)
|
| 123 |
+
responses = [remove_duplicates(response['response']) for response in responses]
|
| 124 |
+
unique_responses = list(dict.fromkeys(responses))
|
| 125 |
+
sorted_responses = sorted(unique_responses, key=lambda r: len(r), reverse=True)
|
| 126 |
+
return sorted_responses[0]
|
| 127 |
+
|
| 128 |
+
@app.post("/generate_chat")
|
| 129 |
+
async def generate_chat(request: ChatRequest):
|
| 130 |
+
if not request.message.strip():
|
| 131 |
+
raise HTTPException(status_code=400, detail="The message cannot be empty.")
|
| 132 |
+
|
| 133 |
+
print(f"Procesando solicitud: {request.message}")
|
| 134 |
+
|
| 135 |
+
responses = []
|
| 136 |
+
num_models = len(global_data['models'])
|
| 137 |
+
|
| 138 |
+
with ThreadPoolExecutor() as executor:
|
| 139 |
+
futures = [executor.submit(generate_chat_response, request, model_data) for model_data in global_data['models']]
|
| 140 |
+
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
|
| 141 |
+
try:
|
| 142 |
+
response = future.result()
|
| 143 |
+
responses.append(response)
|
| 144 |
+
except Exception as exc:
|
| 145 |
+
print(f"Error en la generaci贸n de respuesta: {exc}")
|
| 146 |
+
|
| 147 |
+
if not responses:
|
| 148 |
+
raise HTTPException(status_code=500, detail="Error: No se generaron respuestas.")
|
| 149 |
+
|
| 150 |
+
best_response = select_best_response(responses)
|
| 151 |
+
|
| 152 |
+
print(f"Mejor respuesta seleccionada: {best_response}")
|
| 153 |
|
| 154 |
+
return {
|
| 155 |
+
"best_response": best_response,
|
| 156 |
+
"all_responses": responses
|
| 157 |
+
}
|
| 158 |
|
| 159 |
if __name__ == "__main__":
|
| 160 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|